RESÚMENES

IV CONGRESO NACIONAL
DEL FRIJOL
20-22 de octubre, 2004

Compilación:
Luis Manuel Serrano Covarrubias
Rigoberto Rosales Serna
Carlos Sánchez Abarca
Jorge Alberto Acosta Gallegos

Universidad Autónoma Chapingo
Instituto Nacional de Investigaciones Forestales,
Agrícolas y Pecuarias
Colegio de Postgraduados

Chapingo, México, Octubre, 2004
Coordinación Técnica:
Luis Manuel Serrano Covarrubias
Rigoberto Rosales Serna
Guillermo Mondragón Pedrero
Jorge Alberto Acosta Gallegos
Esteban Solórzano Vega
Ramón Jiménez Regalado

Primera edición en español, Año 2004

ISBN: 968-02-0087-6

©Departamento de Fitotecnia, Universidad Autónoma Chapingo. km 38.5 Carretera México-Texcoco. C.P. 56230. Chapingo, Edo. de México. Tel/Fax. 01(595)9521644. http://www.chapingo.mx/

Derechos reservados conforme a la ley
Impreso y hecho en México
ÍNDICE

PRESENTACIÓN ... xi
1. MESA I. INVESTIGACIÓN .. 1
 1.1. RESÚMENES DE CONFERENCIAS MAGÍSTRALES 2
 1.1.1. SISTEMAS DE PRODUCCIÓN DE FRIJOL EN MÉXICO. Rogelio López Ildefonso. 2
 1.1.2. LA ESTRUCTURA DE INVESTIGACIÓN Y TRANSFERENCIA DE TECNOLOGÍA EN FRIJOL DE COSTA RICA. Carlos Manuel Araya Fernández. 4
 1.1.3. FITOMEJORAMIENTO PARTICIPATIVO DEL FRIJOL EN COSTA RICA. Juan Carlos Hernández Fonseca, Rodolfo Araya Villalobos, Flor Ivette Elizondo Porras. ... 5
 1.1.4. CALIDAD COMERCIAL Y APTITUD CULINARIA E INDUSTRIAL DEL FRIJOL EN MÉXICO. Patricia Pérez Herrera. ... 7
 1.1.5. MAQUINARIA AGRÍCOLA Y SU INFLUENCIA EN LA PRODUCCIÓN DE FRIJOL DE ALTA CALIDAD EN MÉXICO. Ramón Jiménez Regalado. ... 9
1.1.6. SITUACIÓN DEL CULTIVO DEL FRIJOL EN MÉXICO Y SU ENTORNO INTERNACIONAL. Jorge Alberto Aceasta Gallegos. 11

1.2. RESÚMENES DE PRESENTACIONES ORALES ... 13

1.2.1. ANATOMÍA DE XILEMA DEL TALLO EN SEIS LÍNEAS DE FRIJOL (Phaseolus vulgaris L.) EN CONDICIONES DE EXCESO DE HUMEDAD. Elías Hernández Sánchez, María Antonieta Goytia Jiménez y F. Alejandro Barrientos Priego. 13

1.2.2. FERTILIZACIÓN FOLIAR EN FRIJOL, BENEFICIOS Y COSTOS. Aquilino Ramírez Ramírez y Miguel Hernández Martínez. 15

1.2.3. ZONIFICACIÓN AGROECOLÓGICA PARA PRODUCCIR FRIJOL INTERCALADO CON CAÑA DE AZÚCAR EN EL ESTADO DE VERACRUZ. Rosalio López Morgado y Gabriel Díaz Padilla. 16

1.2.4. TECNOLOGÍA GENERADA PARA CULTIVAR FRIJOL INTERCALADO CON CAÑA DE AZÚCAR EN EL ESTADO DE VERACRUZ. Rosalio López Morgado y José Luis Aguilar Acuña. 18

iv
1.2.5. EVALUACIÓN AGRONÓMICO-ECONÓMICA DE DIVERSAS ALTERNATIVAS DE CONTROL DE MALEZAS EN EL CULTIVO DE FRIJOL. Héctor Salvador Bautista, Guillermo Mondrago Pedero y Luis Manuel Serrano Covarrubias. 19

1.2.6. ENFERMEDADES DEL FRIJOL Y DOSIS HOMEOPÁTICAS. Felipe de Jesús Ruiz Espinoza y Marcela Betancourt Olvera. 20

1.2.7. VALIDACIÓN DEL FRIJOL FLOR DE MAYO M38 BAJO RIEGO Y TEMPORAL EN GUANAJUATO. Aquilino Ramírez Ramírez, Javier Zaragoza Castellanos Ramos y Jorge Alberto Acosta Gallegos. 22

1.2.8. CARACTERIZACIÓN DE COMPUESTOS FENÓLICOS EN FRIJOL COMUN Y FRIJOL AYOCOTE. María Alejandra Núñez López, Salvador Horacio Guzmán Maldonado, Rita Miranda López y Jorge Alberto Acosta Gallegos. 24

1.2.9. RESPUESTA FISIOLÓGICA DEL FRIJOL Phaseolus vulgaris L. A LA SUSPENSIÓN DEL RIEGO EN UN SISTEMA DE RAÍZ DIVIDIDA. Juan Francisco Aguirre Medina, Jona Kobashi Shibata, Jorge Alberto Acosta Gallegos, Carlos Trejo López y Lucero del Már Ruiz Posadas. 28

1.2.10. EVALUACIÓN DEL FUNCIONAMIENTO DE DOS MÁQUINAS TRILLADORAS DE FRIJOL. Julio Torres Sandoval, Miguel Albarrán Millán, Juan Gabriel Ochoa Bjarro y Ramón Jiménez Regalado. 29
1.2.11. REMOVIDACIÓN DE CARBOHIDRATOS Y RENDIMIENTO DEL FRIJOLES COMÚN EN CONDICIONES DE SEQUÍA. Rigoberto Rosales Sena, Josué Kohashi Shibata, Jorge Alberto Acosta Gallegos, Carlos Trejo López, Joaquín Ortiz Cercedera y James D. Kelly. 31

1.2.12. EL FRIJOLES: UN CULTIVO ALTERNATIVO AL MAÍZ Y SORGO DE TEMPORAL EN ACÁMBARO. Marcial Fernández Rivera. 33

1.2.13. POTENCIALES MARCADORES DE ADN DE FRIJOLES ASOCIADOS CON LA RESISTENCIA A Fusarium oxysporum f. sp. phaseoli, José Cruz Jiménez Gaitán, Ernestina Valadez Mocetzuma*, Nahum Marban Mendoza, Hilda Victoria Silva Rojas y Aquiles Carballo Carballo. .. 35

1.2.14. PUBESENCIA Y DENSIDAD ESTOMÁTICA EN RELACIÓN CON LA RESISTENCIA A ROYA EN FRIJOLES. Gabino Ortiz Vázquez, María Antonietta Goytia Jiménez, Rigoberto Rosales Sena y Gerardo Leyva Mir. 37

1.2.15. AGRONOMÍA DEL CULTIVO DE FRIJOLES (Phaseolus vulgaris L.) EN COSTA RICA. Luis Antonio Rojas Acuña. ... 39

1.3. RESÚMENES DE PRESENTACIONES EN CARTEL 40
1.3.1. CRECIMIENTO Y RENDIMIENTO DEL FRIJOL EN SUELOS SALINOS DE MONTECILLO, ESTADO DE MÉXICO. J. Alberto Escalante Estrada, María Teresa Rodríguez González y Mario Gutiérrez Rodríguez. .. 40

1.3.2. PRODUCCIÓN DE FRIJOL EN SUELOS ALCALINOS DE MONTECILLO ESTADO DE MÉXICO. J. Alberto Escalante Estrada, María Teresa Rodríguez González y Mario Gutiérrez Rodríguez. .. 42

1.3.3. BIOMASA Y RENDIMIENTO DE FRIJOL (Phaseolus vulgaris L.) DE SECANO EN FUNCIÓN DE LA FECHA DE SIEMBRA. J. Alberto Escalante Estrada, María Teresa Rodríguez González, Mario Gutiérrez Rodríguez y L. Enrique Escalante Estrada. ... 44

1.3.4. FERTILIZACIÓN FOLIAR DE FRIJOL EN DOS AMBIENTES DE TEMPORAL EN CHAPINGO, ESTADO DE MÉXICO. Samuel Sánchez Domínguez y M. Chan Dzul. .. 46

2. MESA 2. COMERCIALIZACIÓN. .. 49

2.1. RESÚMENES DE CONFERENCIAS MÁGISTRALES .. 50

2.1.1. POLÍTICAS PARA FOMENTAR LA COMERCIALIZACIÓN DEL FRIJOL EN MÉXICO. Nicolás Morales Carrillo. .. 50

vii
2.2. RESUMENES DE PRESENTACIONES
ORALES ... 51

2.2.1. ANÁLISIS DE LAS POLÍTICAS DE
APoyo SISTEMA PRODUCTO FRIOjOL. J.
Reyes Altamirano Cárdenas. .. 51

2.2.2. EL CULTIVO DEL FRIOjOLEn
COSTA RICA: PRODUCCIÓN Y
COMERCIALIZACIÓN. José Joaquín Salazar.
... 52

3. MESA 3. TRANSFERENCIA DE
Tecnología ... 54

3.1. RESUMENES DE CONFERENCIAS
MAGíSTRALES .. 55

3.1.1. VALIDACIÓN Y TRANSFERENCIA
DE VARIEDADES MEJORADAS DE
FRIOjOL PARA TEMPORAL EN
DURANGO. Evenor Idilio Cuellar Robles, Francisco
Javier Ibarra Pérez y Jorge Alberto
Acosta Gallegos. .. 55

3.1.2. RESGUARDO LEGAL DEL
GERMOPLASMA EN MÉXICO. Tayde
Morales Santos. .. 57

3.1.3. IMPACTO ECONÓMICO DEL
MEJORAMIENTO GENÉTICO DEL
FRIOjOL EN MÉXICO. Adrián González
Estrada. ... 59

3.2. RESUMENES DE PRESENTACIONES
ORALES ... 62

viii
3.2. FUENTES DE INFORMACIÓN
AGROPECUARIA DE LOS PRODUCTORES DE FRIJOL DEL NOROESTE ZACATECANO. Guillermo Galindo González y Román Zandate Hernández. ... 62

3.2.2. DEMANDAS TECNOLÓGICAS DE PRODUCTORES DE FRIJOL DE TEMPORAL EN EL CENTRO DE MÉXICO. Alfredo Tapia Naranjo y Jorge Alberto Acosta Gallegos. .. 63

3.2.3. CAMBIOS EN LAS UNIDADES DE PRODUCCIÓN DE FRIJOL: REGIÓN CENTRO DE ZACATECAS. Luis Manuel Serrano Covarrubias, V. Horacio Santoyo Cortés, J. Reyes Altamirano Cárdenas. .. 66

4. MESA 4. EDUCACIÓN. .. 68

4.1. RESÚMENES DE CONFERENCIAS MAGISTRALES ... 69

4.1.1. SITUACIÓN ACTUAL DE ALGUNAS INSTITUCIONES MEXICANAS RELACIONADAS CON LA INVESTIGACIÓN Y DOCENCIA EN FRIJOL. Dora María Sangerman Izaquín, Rigoberto Rosales Serna y Luis Manuel Serrano Covarrubias. ... 69

4.1.2. LA PRODUCCIÓN DE FRIJOL COMO OBJETIVO DE APRENDIZAJE EN LA ENSEÑANZA AGRÍCOLA SUPERIOR. Víctor Manuel Mendoza Castillo. ... 71
4.2. RESÚMENES DE PRESENTACIONES ORALES

4.2.1. CAMBIOS CUALITATIVOS EN LA COSECHA DEL FRIJOL (*Phaseolus vulgaris* L.). Esteban Solórzano Vega. .. 73

4.2.2. PRÁCTICAS AGRÍCOLAS DEL FRIJOL EN CHAPINGO Y EN UNA ZONA PRODUCTORA DE FRIJOL. Carlos Sánchez Abarca. ... 74

5. CONFERENCISTA INVITADO

APOYOS A LA PRODUCCIÓN DE FRIJOL EN MÉXICO. Antonio Mejía Haro. Diputado Federal, LXI Legislatura. ... 76
PRESENTACIÓN

Desde su domesticación el frijol común (*Phaseolus vulgaris* L.) ha formado parte importante de la ingesta alimenticia de la población mexicana. Actualmente en México, esta leguminosa es el segundo cultivo en importancia con base en la superficie de siembra (2.2 millones de hectáreas) y el nivel de consumo (15 kg por persona al año). A pesar de sus características nutrimentales e importancia en el mantenimiento de la salud, en la actualidad el frijol muestra una tendencia a la baja en su consumo y con ello se han incrementado algunas enfermedades debido a cambios en los hábitos alimenticios, como parte de la influencia extranjera. Además, la globalización está ejerciendo presiones fuertes en la red de producción, comercialización, industrialización y consumo del grano de frijol.

El objetivo del presente congreso fue compilar y analizar los avances científicos y tecnológicos para generar un programa de trabajo coordinado entre los diferentes actores de la Cadena Sistemas-Producto Frijol; así como en la integración de la Red de Transferencia de Tecnología en esta leguminosa. Como antecedente tenemos que México es reconocido como uno de los estados primarios de origen y de diversidad genética del frijol común. Dicha diversidad es de gran importancia en los programas de mejoramiento genético de esta leguminosa en México y el mundo, la cual debe ser utilizada y protegida para dar solución a la problemática que enfrentan los productores de frijol. Entre los problemas de mayor importancia que enfrenta el cultivo del frijol en México y otros países latinoamericanos se encuentran los de tipo biótico (plagas y enfermedades), abióticos (sequías, heladas, etc.).

En la actualidad se tienen importantes avances en el mejoramiento genético del frijol ya que se han generado variedades que han dado nombre a las principales clases comerciales de frijol y se ha incrementado el rendimiento, la
resistencia a las enfermedades, la precocidad, el ajuste fenológico del frijol y se ha mejorado la calidad culinaria. Además se ha caracterizado el germoplasma de frijol mediante atributos fenotípicos y con el uso de marcadores genéticos moleculares, con lo que se han sentado las bases para proteger legalmente este patrimonio de todos los mexicanos. En las investigaciones recientes cada vez se encuentran más propiedades al frijol, el cual puede a prevenir ciertos tipos de cáncer y sus propiedades antioxidantes ayudan a mantener la salud. Se ha avanzado también en el diseño de maquinaria agrícola para reducir costos de producción y facilitar el manejo agronómico.

En trabajos de investigación y mejoramiento genético se han caracterizado y mejorado la calidad de las variedades de frijol para la comercialización y para el proceso de industrialización. Lo anterior, pese a las agresiones del exterior en lo que respecta a la apropiación indebida de variedades mexicanas con fines de lucro, el subsidio a la producción, contrabando, etc. También se tienen agresiones internas, principalmente la reducida promoción para el consumo del frijol, la introducción ilegal de grano del extranjero, la promoción para sembrar variedades extranjeras sin sustento técnico, obsolescencia de los programas educativos que inciden en el frijol, falta de financiamiento para la investigación, etc. Pese a lo anterior, se tienen logros importantes que requieren de análisis imparcial para establecer las rutas a seguir con el fin de incrementar la competitividad y la calidad dentro de la Cadena Sistema-Producto Frijol. Con el desarrollo de congresos específicos como el actual se tiene la expectativa de obtener logros significativos en la cadena productiva del frijol con la cojugación de los actores involucrados, lo que permitirá mayores beneficios económicos y la sustentabilidad de este componente cultural y alimenticio de la agricultura mexicana.

El Comité Organizador

xii
1. MESA 1. INVESTIGACIÓN
1.1. RESÚMENES DE CONFERENCIAS MAGISTRALES

1.1.1. SISTEMAS DE PRODUCCION DE FRIJOL EN MÉXICO

Rogelio Lépiz Ildefonso

1Centro Universitario de Ciencias Biológicas y Agronómicas (CUCBA-Universidad de Guadalajara). Carr. Guadalajara-Nogales, km 15.5. Las Aguas, Zapopan, Jalisco. Edificio A Planta Alta de la División de Ciencias Agronómicas. correo-e: rlepis@cucba.udg.mx

Los sistemas de producción de frijol en México, entendidos como la siembra de esta leguminosa en unicultivo o en combinación con otras especies en diferentes condiciones agroclimáticas, se han practicado desde épocas precolombinas. Los productores a través del tiempo, en la búsqueda de una mayor producción de alimentos, han diseñado varios tipos de sistemas agrícolas, con la tendencia siempre de llegar a la simplicidad, en lugar de la complejidad.

El sistema más común de sembrar frijol hasta la época de los 70’s del siglo pasado, fue en asociación con maíz; en los tiempos actuales, el frijol se siembra en unicultivo en más del 90%. Igualmente, la producción de frijol se ha mudado de región geográfica, saliendo del centro del país, hacia el norte y noroeste.

El sistema asociado con maíz se caracteriza por utilizar variedades de frijol de guía con habilidad para trepar, razón por la cual a este tipo de cultivares se les conoce como variedades de guía, trepadoras o volubles. Son de ciclo largo (4 a 5 meses de siembra a cosecha), de crecimiento vigoroso (igualan o superan al crecimiento del maíz), de alto potencial de rendimiento (producen hasta 4,000 kilogramos por hectárea en el sistema de tutores o espaldera) y de una alta calidad de grano (grande, color atractivo y suave cocción).

Desde el punto de vista de productividad, el sistema de cultivo maíz y frijol asociados, considerando el aporte de ambas
especies, es más redituables que sembrar maíz o frijol en unicultivo. Desde el punto de vista alimentario, el sistema proporciona al productor alimentos desde etapas tempranas del cultivo o productos que puede guardar para su alimentación de una cosecha a otra. Haciendo referencia a la seguridad de obtener una cosecha ante los altos riesgos climáticos, es más probable llegar a cosechar una de las dos especies cuando se siembran en asociación, que cuando se siembra un solo cultivo. En cuanto a la conservación de la fertilidad de los suelos, la siembra simultánea de una gramínea y una leguminosa que fija nitrógeno atmosférico, además de requerir cantidades moderadas de fertilizante para una buena cosecha, reduce la velocidad de enriquecimiento de los suelos. No obstante las ventajas económicas, de sostenibilidad de los sistemas asociados y de la importancia que ha tenido la siembra de frijol asociado con maíz, esta forma de cosechar frijol prácticamente ha desaparecido.

Algunas de las causas de la disminución drástica de las siembras de frijol en asociación con maíz, han sido la modernización del cultivo de maíz (uso de herbicidas, la mecanización de la siembra y cosecha, uso de híbridos a altas densidades de población) y la escasez de mano de obra en el campo para las labores del cultivo asociado, sistema de mayor demanda de trabajo. Por otro lado, la siembra de frijol bajo el sistema de unicultivo, se ha generalizado en el país. Se practica en dos regiones principales. El norte centro con 1.5 millones de hectáreas, bajo condiciones de temprado deficiente (450 mm de precipitación) y rendimientos bajos, de 493 kg/ha. La región del noroeste de condiciones agroclimáticas más favorables, con 230,000 ha y rendimientos de 1,500 kg/ha. Adicionalmente, los estados de Chiapas y Veracruz en el sureste, también aportan a la producción nacional de frijol en forma significativa, con 175,000 ha cosechadas.

La siembra de frijol bajo el sistema de unicultivo en el norte del país y principalmente en el noroeste, se ha modernizado. La tendencia es incrementar las dosis de fertilizantes, el uso de
fertilizantes, la utilización de variedades mejoradas de tipo arbustivo, de grano con demanda en el mercado nacional, la mecanización del cultivo en las labores de siembra y cosecha y la venta del producto. En resumen se puede afirmar, que los sistemas de producción de frijol han cambiado en los últimos cincuenta años, moviéndose del sistema asociado principalmente con maíz, a las siembras de frijol en «plantío». Igualmente, que las siembras de esta leguminosa han migrado, moviéndose del centro del país, hacia el norte y noroeste de México.

1.1.2. LA ESTRUCTURA DE INVESTIGACIÓN Y TRANSFERENCIA DE TECNOLOGÍA EN FRÍOJOL DE COSTA RICA

Carlos Manuel Araya Fernández

1Programa de Investigación y Transferencia de Tecnología de Frijol (PITTA-FRIJOI), Costa Rica.

La estructura formal de la investigación y la transferencia de tecnología en Costa Rica, fue formalmente aprobada por Decreto Ejecutivo en 1996. Se estableció el Sistema Nacional de Investigación y Transferencia de Tecnología Agropecuaria, constituido por representantes de instituciones del gobierno central y autónomas del sector, las instituciones de educación superior, la empresa privada, representantes de organizaciones de productores, y el presidente de la FITTACORI. Las instituciones que integran el sistema se comprometen a atender las prioridades definidas en el seno de la CONITTA, y a organizar los programas que atienden los aspectos técnicos por cultivos (PITTA).

El PITTA FRIJOI coordina los procesos de investigación y transferencia de tecnología con las autoridades de las instituciones del sector, con base en la definición de competencias y asignación de responsabilidades específicas, para garantizar el desarrollo de los proyectos y el
cumplimiento de las metas. El apoyo financiero para los proyectos de investigación y transferencia de tecnología se logra mediante la presentación de propuestas interinstitucionales ante organismos financieros. Las áreas prioritarias de trabajo son: mejoramiento genético, incremento de rendimiento, evaluación de enfermedades y selección de genes que confieran resistencia a enfermedades y tolerancia a factores abióticos, estudio de la diversidad genética de patógenos del acervo mesoamericano, difusión de resultados y capacitación de productores. Anualmente se organiza el congreso frijolero nacional, el cual congrega a representantes de todos los eslabones de la agrocadena, y participan expositores tanto nacionales como extranjeros en la discusión de temas de relevancia nacional y definición de estrategias.

1.1.3. FITOMEJORAMIENTO PARTICIPATIVO DEL FRIJOL EN COSTA RICA

Juan Carlos Hernández Fonseca¹, Rodolfo Araya Villalobos³ y Flor Ivette Elizondo Porras³

¹Instituto Nacional de Innovación y Transferencia en Tecnología Agropecuaria, jhernandez@costarricensc.cr,³Universidad de Costa Rica,³Ministerio de Agricultura y Ganadería.

En Costa Rica se han desarrollado variedades frijol resistentes a enfermedades, y de buen potencial de rendimiento, sin embargo un número importante de agricultores demandan variedades similares a sus cultivares criollos, con características de precocidad, arquitectura erecta, buen rendimiento, calidad de grano y con menores exigencias en el uso de agroquímicos. Las instituciones que tienen que ver con el mejoramiento genético del frijol en Costa Rica, ha establecido un esquema de trabajo conjunto con los agricultores. Estos agricultores están organizados a
través de Asociaciones de Productores (ASOPROS) legalmente constituidos, con su respectiva personería jurídica.

El Fitomejoramiento participativo se fundamenta en el trabajo colaborativo entre agricultores, fitomejoradores y extensionistas. Esta particularmente orientado hacia la obtención de variedades de frijol para grupos de agricultores organizados. Bajo la metodología de FP, los mejoradores se identifican más con la racionalidad técnica y económica de los agricultores (el acceso al mercado es tan importante como el rendimiento máximo). Se discute más, se consideran los materiales genéticos para una evaluación ejecutada por ellos en sus parcelas. Bajo el esquema de FP las variedades se seleccionan con los criterios de color de grano comercial, arquitectura de planta, rendimiento y adaptación al manejo del productor. Así los agricultores inician un proceso alternado de selección, primero en la estación experimental, para aplicar sus propios criterios, específicos a su zona y a su economía, y para el siguiente ciclo se evalúa en sus fincas. Como resultado de este proceso, la selección y la posterior adopción de las variedades es más efectiva. Los agricultores motivados por los resultados del FP, solicitaron la mejora genética de Sacapobres, principal variedad criolla de la Región Brunca de Costa Rica. Producto del trabajo de FP, se han liberado dos variedades de grano rojo Bribri y Cabécar, por parte de la ASOPRO se ha implementado de un programa de producción de semilla.
El concepto de calidad suele diferir en los integrantes de los distintos eslabones involucrados en la cadena productiva del frijol. Así, la calidad que buscan los productores, comercializadores, procesadores, industriales y consumidores depende de las perspectivas y necesidades particulares de cada uno de ellos. En el Laboratorio de Calidad de Frijol del INIFAP se ha estudiado la calidad del frijol en México desde el punto de vista comercial, de aceptación para su consumo en fresco y calidad industrial, incluyendo el proceso de empacado en bolsa y enlatado. La evaluación de muestras comerciales de frijol a granel y empacado en bolsa, volectadas en diferentes estados de la República Mexicana, de acuerdo con las especificaciones físicas y de calidad de cocción contempladas en la Norma Mexicana NMX-FF-038-SCFI-2002, ha permitido detectar diferencias estadísticas en la calidad comercial del frijol que se expende a granel y empacado en bolsa, identificar las características que pueden causar problemas de comercialización del producto en ambas presentaciones, así como los procesos en los que debe enfatizarse el control para lograr la obtención de productos con la calidad necesaria para mejorar el precio de venta y la aceptación en el mercado.

La selección de los materiales generados en el proceso de mejoramiento genético con base en su calidad culinaria, ha hecho posible que las nuevas variedades liberadas presenten características de calidad similares o superiores a las de las
variedades comerciales, dando énfasis a la conservación o reducción del tiempo de cocción para el frijol destinado al consumo en fresco, a fin de disminuir el tiempo y cuestionables empleados en su preparación. Como respuesta a la creciente demanda de materia prima para la industria dedicada a la transformación industrial del frijol en México, se ha desarrollado la metodología para evaluar la calidad del frijol destinado a la industria de enlatado.

El estudio del comportamiento de un grupo de variedades durante el enlatado, ha permitido determinar que aunque la calidad industrial del frijol es influenciada por el ambiente, presenta un componente genético que puede ser aprovechado para identificar clases comerciales y variedades con características salientes para este uso, haciendo posible incluso la discriminación de genotipos con un comportamiento favorable para ser utilizados como materia prima de frijoles enlatados, ya sea como grano entero o frijoles refrítes, a través de la evaluación de ciertos parámetros de calidad. Como respuesta a la demanda de la industria beneficiadora-empacadora, la evaluación de los cambios en el tiempo de cocción y color del grano de frijol durante el almacenamiento en bolsas de polietileno, ha permitido identificar variedades con menor propensión al endurecimiento y decoloración del grano, las cuales pueden recomendarse para ser utilizadas como materia prima de la industria dedicada al proceso de beneficio y empacado, ya que éstas presentarán una mayor vida de anaquez.

El uso de frijol con calidad sobresaliente para los diferentes destinos resultará favorable para facilitar el proceso de comercialización del producto, aumentar el precio de venta (valor agregado), cubrir las expectativas del consumidor, mejorar la rentabilidad industrial y la calidad del producto enlatado y aumentar la vida de anaquez del frijol empacado en bolsa, al atender las necesidades particulares de cada uno de los establos involucrados en la cadena agroindustrial del frijol.
El frijol se cultiva en la mayor parte del territorio nacional, en el cual destacan los Estados de Zacatecas, Durango, Chihuahua, Nayarit y Sinaloa. Dado que es uno de los alimentos principales de la población, se siembra tanto para comercializarlo como para autoconsumo. En el primer caso, es necesario cultivar una superficie mínima, que varía de acuerdo a la región productora, para que esta actividad resulte costeable. Los agricultores que se dedican a la producción de frijol para el mercado, en general se especializan en la explotación de este cultivo y han desarrollado un sistema de producción bastante eficiente. El diseño y la importación de maquinaria e implementos agrícolas adecuados para esta actividad, han contribuido a aumentar la eficiencia y productividad del sistema de producción de frijol. Es necesario reducir al mínimo el número de pasos de maquinaria agrícola sobre la parcela del cultivo, pero realizar todas las labores necesarias para el mismo. La combinación de labores agrícolas en cada paso de tractor o maquinaria es una opción viable para reducir los pasos de maquinaria, y por ende aumentar a productividad. En la actualidad los agricultores utilizan la combinación de labores de cultivo tales como: surcido, siembra y fertilización; cultivo y fertilización; etc. Sin embargo, es necesario combinar un número mayor de labores para realizarlas en un solo paso, por ejemplo: subsoleo,
acondicionamiento de la cama de siembra, siembra, fertilización, piloteo; cultivo, atiende, fertilización, aplicación de agroquímicos, piloteo, otra combinación para cosecha, etc. Por otro lado, el beneficio del grano es determinante para darle un valor agregado. La selección de granos uniformes, la eliminación de impurezas, de granos rotos o dañados, de granos de diferente color, y finalmente el pulido y envasado del mismo, son algunas de las actividades o labores que permiten obtener un grano de mayor calidad, y en general de mayor precio, para el mercado nacional e internacional. Para tales fines existen diferentes máquinas en el mercado las cuales permiten diversos grados de beneficio del frijol, de acuerdo a su complejidad y costo. Actualmente, la utilidad económica que representa el beneficio del frijol en su mayor parte se cuela en el eslabón de la cadena productiva que acapara la producción, y que llega a representar hasta un 50% del valor final del producto. Es necesario, si se quiere hacer más atractiva la producción de frijol, que parte de esa utilidad o toda si es posible quede en manos de los productores primarios del cultivo. En éste trabajo, se hacen algunas propuestas viables que permitirían que ese productor pueda darle el valor agregado a su frijol, de manera que aumenten sus ganancias. Asimismo, se hace una comparación con la producción y beneficio de otros granos.
Jorge Alberto Acosta Gallegos

La producción mundial del frijol común es reducida si se compara con la de los cereales como el trigo, el arroz y el maíz; por ejemplo, el frijol representa sólo el 2.9% de la producción de trigo. Brasil es el principal país productor de frijol común; mientras que los consumos más altos per capita en el mundo ocurren en países de África Oriental. En México el cultivo de frijol reviste gran importancia social por sus características alimenticias. Además de ser tradicional su consumo, el frijol genera un gran impacto económico en los principales estados productores, entre ellos Zacatecas, Durango, Sinaloa y Nayarit. Por otra parte y a pesar de los nuevos descubrimientos sobre algunas propiedades fitoquímicas del frijol con influencia en la prevención de enfermedades específicas, su consumo y superficie sembrada han disminuido, no así su producción.

Para impulsar su consumo es necesario mejorar la calidad de los productos ofertados a los consumidores e informarles sobre las propiedades alimenticias y nutraceuticas recientes descubiertas, así como incrementar la competitividad productiva de los componentes de producción, comercialización y de transformación en la cadena frijol. Esto último para poder ofertar frijol de alta calidad a precios accesibles a los consumidores. En cuanto al desarrollo de nuevas variedades, en los últimos años los fitoecrologos han estado recibiendo señales confusas, por ejemplo, la comercialización del grano de frijol es un problema grave.
que erróneamente se atribuye a las características intrínsecas de la variedad, cuando la mayor parte del problema es manejo pos cosecha; en algunos áreas se están demandando variedades diferentes a las que históricamente se han producido, lo que puede ocasionar sobre-oferta de ese tipo de frijol; los industriales están interesados por un lado en variedades que se hidraten bien para tener una mayor producción de latas por kg de frijol; y por otra parte en variedades cuyo grano quede entero después de ser procesado y en el caso de frijoles reftitos hasta mitades pueden ser utilizadas.

Un problema relacionado con lo anterior, es la mezcla de diferentes variedades del mismo tipo durante la recepción sin tener alguna prueba sobre la conveniencia de hacer eso, sobre todo si se conoce el uso final que se dará al grano. Un comentario aparte, es la baja disponibilidad de semilla de frijol, lo que constituye un cuello de botella para la rápida utilización de mejores genotipos. En simbiosis, para que el cultivo del frijol tenga un repunte se necesita de la coordinación y apoyo entre los diferentes componentes de la cadena agroalimentaria, apoyar la investigación, enfatizar la calidad, la búsqueda de nuevos mercados, estudiar la utilización de frijol en otros productos, etc.
1.2. RESÚMENES DE PRESENTACIONES ORALES

1.2.1. ANATOMÍA DE XILEMA DEL TALLO EN SEIS LÍNEAS DE FRIJOL (Phaseolus vulgaris L.) EN CONDICIONES DE EXCESO DE HUMEDAD

Elias Hernández Sánchez1, María Antonieta Goytia Jiménez2, F. Alejandro Barrientos Priego3

1Departamento de Fitotecnia. Tel. 0155551831101, correo: eliashe@correouachpizuma. Departamento de Preparación Agrícola. Universidad Autónoma Chapingo. Carretera México-Toluca km 28.5.

El hombre a través de técnicas de mejoramiento genético ha acelerado hasta cierto punto la adaptación de algunas plantas, principalmente de aquellas a las cuales ha dado un uso, y de las cuales obtiene un beneficio. Sin embargo las exigencias de que cada vez las plantas se adapten mejor y que el beneficio que se obtiene de ellas sea cada vez mayor se ha convertido en una carrera larga, complicada y costosa. Algunos autores indican que se han liberado hasta el año 2000, 12 variedades mejoradas de frijol para su uso comercial en el Altiplano Semiárido del norte centro de México. Dichas variedades han sido de las principales claves demandadas por el mercado. A estas variedades se les ha dotado, a través del mejoramiento genético, de características más deseables en comparación con variedades criollos.

Por ello, se planteó evaluar características anatómicas del xilema en tallo de genótipos de seis líneas de frijol seleccionadas en sequía, sometidas a exceso de humedad, que permita clasificar a las mismas y su posible relación con el rendimiento. Una vez obtenidos los datos se procedió a hacer un análisis de varianza, pruebas de medias para raticar su validez y encontrar relaciones. Así mismo, se realizaron gráficas comparativas entre los tratamientos. Para realizar la caracterización se siguió la metodología propuesta por
González-Andrés (2001). Primero las mediciones se realizaron con el programa informático *Image Tool* (UTHCSA, 2000). Se realizaron dos tipos de análisis, de agrupamiento y de ordenación. En el primer caso se determinó una matriz de similitud utilizando el Coeficiente de Distancia Taxonómica, y el agrupamiento de accesiones se obtuvo por el método UPGMA. En el segundo caso se obtuvo una matriz de correlación. A partir de esta matriz se obtuvieron los eigenvalores y eigenvectores. Para todos los análisis se utilizó el programa NTSYS-PC (Rholf, 2000). Los caracteres que más contribuyen al primer componente son el DT (0.9673), ART (0.9629), SAVX (-0.9250) y DM (0.8874). Para el segundo componente los caracteres que más contribuyeron fueron la DEVX (0.8889), la relación AT/LT (0.7948), INC (-0.7942) y PTG (-0.7257). Finalmente para el tercer componente los caracteres que más contribuyeron fueron CVX (-0.7728), CM (-0.6824) y SAVX/SAPX (0.6824).

La condición de exceso de humedad modificó las características del xilema y floema en las líneas de fríjol evaluadas. La línea L-64 presentó mayor plasticidad para adaptarse a condiciones diferentes de ambiente con un destacado rendimiento. Por otro lado, las características que contribuyeron a que las líneas rendidoras se distinguieran de las poco rendidoras fueron el Diámetro de Tallo, Área de Tallo, Suma de Áreas de Vasos del Xilema, Diámetro de la Medula, Densidad de Vasos de Xilema por Milímetro Cuadrado, la relación entre Eje Menor del Tallo dividido por el Eje Mayor del Tallo, el Índice de Cosecha, Peso Total de Grano (Rendimiento), Centroide de Vasos de Xilema, Centroide de Medula y finalmente la relación de Suma de Áreas de Vasos de Xilema dividido por la Suma Parcial de Áreas de Xilema.
Aquilio Ramírez Ramírez y Miquel Hernández Martínez

1Proyecto financiado por INIFAP. CIRCE, CEBAJ, INIFAP, km. 6.5 Carretera Celaya-San Miguel de Allende, Celaya Gto. CP 38000, México. Tel. 461 61 15323. ramirez_ag@hotmail.net.mx.

Una necesidad imperante en El Bajío de México es bajar los costos y aumentar la producción de los granos, por lo que la fertilización foliar, es una alternativa viable que permite incrementar rendimientos, mejorando la rentabilidad de los cultivos. La nutrición foliar se esa convirtiendo en una práctica común entre los productores de frijol, porque favorece el buen desarrollo, aumenta el rendimiento y calidad del producto de los cultivos. El objetivo fue validar en condiciones de productor la fertilización foliar y determinar la mejor para aumentar los rendimientos de frijol. Se establecieron cinco parcelas y los tratamientos evaluados fueron: 3 kg ha\(^{-1}\) de urea foliar (T1), 1.0 kg ha\(^{-1}\) de nitrato de amonio (T2), 2.0 kg ha\(^{-1}\) de nitrato de amonio (T3) y testigo (T4). Los tratamientos se realizaron antes y después de floración usando 200 litros de agua para cada uno. Los resultados indican que existe respuesta a la fertilización foliar, aunque los incrementos en rendimiento fueron variables, solo en la localidad de Valle de Santiago para T2 y T3 son menores que T4. En promedio de las cinco localidades, el mejor fue el T1 con una ganancia en rendimiento sobre el T4 de 566 kg ha\(^{-1}\) que representa el 34.5% siguiendo T2 y T3 (estadísticamente iguales) con ganancias en rendimiento de 266 kg ha\(^{-1}\) en promedio, o sea un 16.2% sobre T4. Para el análisis económico se tomó en cuenta el mejor (T1) y testigo. En resumen se estima un costo de la fertilización foliar por hectárea de $ 490.00 (incluye equipo, fertilizantes y cuatro jornales de trabajo).
El incremento en rendimiento fue de 566 kg ha⁻¹ y considerando un precio mínimo de $ 5000.00 por tonelada de grano se tiene un ingreso total de $ 2830.00. A esto se le resta el costo de la fertilización, logrando un ingreso neto de $ 2340.00, que equivalve a una tasa de retorno de 47.7%, es decir por cada $ 100.00 invertidos, se ganaron $ 47.70 por concepto de fertilización foliar. Se encontró respuesta a la fertilización foliar. El mejor tratamiento fue urea foliar con una ganancia en rendimiento de 566 kg ha⁻¹ (34.5%) con respecto al testigo. La tasa de retorno fue de 47.7%, o sea una relación beneficio-costo de 1:4.77.

1.2.3. ZONIFICACIÓN AGROECOLÓGICA PARA PRODUCIR FRIJOL INTERCALADO CON CAÑA DE AZÚCAR EN EL ESTADO DE VERACRUZ

Rosalío López Morgado¹ y Gabriel Díaz Padilla¹

¹Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias-Campo Experimental Xalapa, km 3.5 Carretera Xalapa-Veracruz, Tel. 228 8125744; Fax 228 8129441, correo:e-lopez.rosalio@innaf.gob.mx

Los trabajos de caracterización agroecológica de áreas y la zonificación de cultivos, tienen como objetivo suministrar la información ecológica suficiente para un mejor aprovechamiento u optimización en el manejo de los recursos naturales. El establecer con certeza las áreas geográficas donde prosperen con mayor éxito los cultivos, no es un problema aislado que depende sólo del clima o del suelo, sino que se conjugan múltiples factores, entre los que destacan por su importancia, los climáticos, edáficos, agrométricos y socioeconómicos. Así una zonificación agrícola integral, toma en cuenta dos marcos de referencia, el biofísico y el socioeconómico, pero es obvio que el marco biofísico es el sostén fundamental de la zonificación.
Dentro de este marco conceptual y partiendo de una zonificación a nivel estatal, en el DDR-004 Coatepec, Ver., se llevó a cabo una regionalización agrícola integral para producir frijol en cultivo intercalado con caña de azúcar, con el fin de plantar un diagnóstico que, tomando en cuenta los planos físico biológico y socioeconómico, proporcionará los elementos necesarios para la toma de decisiones en relación con esta alternativa de aprovechamiento, en las zonas de abasto de los ingenios Mahuixtlán y La Concepción. Ambas factorías, dentro del territorio distrital en referencia. El procesamiento cartográfico computarizado se realizó a través del Sistema de Información Geográfica-SIG/DRISI-que posee el INIFAP. Este sistema contiene herramientas que permitan gestionar información, mediante una base de datos y obtener una variada gama de proyecciones cartográficas y temáticas.

Los resultados indicaron que existe zonas importantes con potencial para producir caña de azúcar, no así para el caso de frijol. Al sobreponer los mapas que mostraban el potencial para cada cultivo, sobre la carta que indicaba el uso actual del suelo con caña de azúcar, se obtuvo una referencia cartográfica que evidenció la superficie estatal y distrital con aptitud para el cultivo intercalado entre las especies mencionadas. Por otro lado, las características de los productores que recientemente han sembrado o siembran la leguminosa entre los cañaverales, no mostraron un patrón común de comportamiento; lo cual permitió asumir que toda la población de productores cañeros es potencialmente susceptible de ser persuadida para el mejor aprovechamiento de la tierra mediante el cultivo de frijol intercalado con caña de azúcar, en el Distrito de Desarrollo Rural 004, Coatepec, Ver., ya que la variable que determina la siembra de frijol intercalado en caña es la oportunidad de existencia de plazuela y la coincidencia con ésta de la fecha de siembra de frijol.
El agroecosistema de la caña de azúcar es uno de los más eficientes para la conversión de energía solar en biomasa vegetal utilizada por el hombre y los animales. Sin embargo esta gramínea no utiliza el espacio del suelo agrícola durante todo el ciclo vegetativo, ya que su crecimiento es lento los primeros tres meses después de la siembra, lo cual mantiene una condición de suelo desnuda en el entresurco, generalmente ocupado por maleza que perjudica el “pellillo” de la caña. Una forma de aumentar la productividad de la tierra para lograr mayor producción de alimentos por unidad de área, es la intensificación de su aprovechamiento mediante la obtención de dos o más cosechas en una misma superficie en un año agrícola. Por otro lado, el estado de Veracruz presenta un déficit en producción de fríjol de alrededor de un 75 por ciento en relación con la demanda; esto a causa de una reducción en la superficie sembrada, que a su vez deriva de los altos costos de producción y los bajos rendimientos de grano.

El uso de la tierra ocupada por el cultivo de caña de azúcar, puede intensificarse intercalando fríjol de tipo arbusitivo, con lo cual se aprovecha el entresurco en espacio y tiempo, durante los primeros tres o cuatro meses de plantada la graminea, sin detrimento en el rendimiento y calidad industrial de la producción de azúcar. Asimismo, los costos de producción para el cultivo de fríjol intercalado con caña...
de azúcar se abaten en cerca de un 50 por ciento en relación a cuándo se siembra en unicultivo, en tal forma que la siembra de frijol intercalado con caña de azúcar en el ciclo de plantilla, es factible técnica y financieramente, puesto que no se presenta competencia entre ambos cultivos y, una vez cosechado el frijol, el calderal crece y se desarrolla como si nunca se hubiera cultivado frijol intercalado.

En el presente trabajo se presentan resultados de investigaciones realizadas por el INIFAP, así como información generada en otras instituciones, tanto de México como de otros países, la cual deberá adecuarse a las condiciones regionales de la zona de abasto de cada ingenio, con el propósito de elevar la productividad de la tierra dedicada al monocultivo de la caña de azúcar y producir frijol a más bajo costo.

1.2.5. EVALUACIÓN AGRONÓMICO-ECONÓMICA DE DIVERSAS ALTERNATIVAS DE CONTROL DE MALEZAS EN EL CULTIVO DE FRIJOL.

Héctor Salvador Bautista1, Guillermo Mondragón Pedreño2 y Luis Manuel Serrano Covarrubias3

1Departamento de Fitotecnia de la Universidad Autónoma Chapingo. Carr. México-Texcoco Km. 38.5, Chapingo, Mèx. C.P. 56230.
2Departamento de Parasitología Agrícola de la Universidad Autónoma Chapingo. Carr. México-Texcoco Km. 38.5, Chapingo, Mèx. C.P. 56230.

Se realizó un experimento en el Campo Agrícola Experimental de la UACH, en Chapingo, México, durante el ciclo primavera-verano del año 2003, con la finalidad de obtener una alternativa de control de malezas que fuese eficiente y a la vez rentable para los productores. Dentro de éstas se comprendió la utilización de métodos químicos, mecánicos y la combinación de estos, en donde se evaluó el porcentaje de control de malezas por especie y total a los 15, 19
30 y 45 DDA; peso seco de frijol y de maleza, y un análisis económico para cada tratamiento. Se utilizó un diseño de bloques al azar con doce tratamientos y cuatro repeticiones. La mejor alternativa de control de malezas fue con control químico, utilizando el herbicida Imazethapyr, aplicado en preemergencia a una dosis de 0.75 Kg de I.a ha⁻¹. Este tratamiento proveyó el peso seco de frijol más alto del ensayo (560.40 g/m²) y un buen control de malezas (96.5%) hasta los 45 días después de la aplicación, además de un costo de producción bajo.

1.2.6. ENFERMEDADES DEL FRIJOL Y DOSIS HOMEOPÁTICAS

Felipe de Jesús Ruiz Espinoza¹ y Marcela Betancourt Olvera²

¹CRUAN- PAO, UACH, ²Colegio de Posgraduados

La sociedad actual tiene diversos problemas, uno de ellos es el relacionado con la contaminación. A ello están ligados los problemas de salud conocidos como enfermedades crónico-degenerativas, las cuales inciden en disminuir la calidad de vida de los mexicanos. La historia reciente de nuestro país nos menciona que parte de la explicación de éste problema se encuentra en el uso indiscriminado e inadecuado de sustancias tóxicas producto de la llamada "revolución verde" la cual incidió en diversos aspectos positivos pero llevó también un daño que aún hoy continuamos padeciendo. La recuperación de la agricultura tradicional, con diversas construcciones teóricas como la agricultura orgánica, biodinámica, ecológica y otras que tiene como objetivo la producción de cultivos sin contaminación, a sido producto de esa necesidad actual de revertir los daños que la agricultura química ha hecho.

En este contexto la utilización de dosis infinitesimales, las cuales tienen la propiedad de incidir sobre los seres vivos
sean estos hombres, animales o plantas; el efecto de las dinamizaciones son inocuas, sobre todo aquellas mayores a la 11 Centesimal Hahnemanniana, por ello su incidencia no es contaminante, teniendo la propiedad de incidir también sobre organismos patógenos. Por ello es necesario analizar las posibilidades de aprovechar las dosis infinitesimales en el control de las enfermedades del fríol.

Los materiales utilizados en experimentos dentro de la institución han sido los usuales para un trabajo de investigación. En el caso del método de investigación este corresponde al documental. Recuperando de ésta forma la información pertinente sobre otros trabajos de investigación y los resultados propios.

Corresponde el mérito de haber redescubierto la homeopatía al Dr. Hahnemann quien no sólo recuperó un principio de curación, sino que dotó a la homeopatía de un método de preparación y de investigación basado de la homeopatía una posibilidad en medicina. Uno de los aspectos relevantes del aporte del método homeopático son las dosis infinitesimales las cuales garantizan que no habría problemas de toxicidad y los efectos sobre los organismos vivos serían positivos.

La aplicación de dinamizaciones en plantas es diversa, ya que se puede utilizar las dosis infinitesimales para controlar organismos patógenos como hongos, virus y bacterias. Incluso su efecto se muestra en el incremento o decremento de la biomasa de los vegetales. Particularmente en fríol se han utilizado sustancias venenosas para promover su crecimiento hasta aquellas que han contribuido indirectamente a protegerlas de plagas y enfermedades. Existen otras experiencias en fríol relacionadas con las opciones diversas de la agricultura.

Se puede concluir que es posible reducir e incluso eliminar el daño que causan las enfermedades en el fríol, sin incorporar sustancias tóxicas a los cultivos. La agrohomeopatía
representa una alternativa no contaminante para el control de las enfermedades sin dañar el ecosistema y al hombre.

1.2.7. VALIDACIÓN DEL FRIJOL FLOR DE MAYO M38 BAJO RIEGO Y TEMPORAL EN GUANAJUATO

Aquilino Ramírez Ramírez, Javier Zaragoza Castellanos Ramos y Jorge Alberto Acosta Gallegos

1Proyecto financiado por la Fundación Guanajuato Produce, A.C. 2CIRCE, CEBAJ, INIFAP. km 6.5 Carretera Celaya-San Miguel de Allende, Celaya Gto. CP 38000, México. Tel. 461 61 15323. ramirez_aq@hotmail.net.mx.

El frijol es una de las leguminosas que se consumen en mayor cantidad a nivel mundial. En nuestro país forma parte de la dieta diaria y es por lo tanto un artículo esencial de la producción y consumo, ya que constituye una de las principales fuentes de proteína. Este cultivo se siembra bajo dos condiciones de humedad: riego y temporal. Aunque en los dos existe un alto potencial de producción el rendimiento promedio es bajo, ya que se encuentra expuesto a numerosos factores como enfermedades y sequía. Actualmente la única variedad comercial que se siembra en verano, tipo Flor de Mayo resistente a la roya (o chauixite) y al Virus del Mosaico Común, es la Flor de Mayo Bajío. Este material ha mostrado buena aceptación y calidad culinaria, aunque bajo condiciones ambientales limitativas produce granos muy claros con reducido tamaño, por lo cual el comerciante tieade a ofrecer un precio más bajo comparativamente con los tipos de Flor de Mayo Ciolillos o a la variedad Flor de Mayo RMC. Por otro lado, es necesario tener un mosaico de variedades en la región con el fin de prevenir el eventual impacto de nuevas razas de roya. Una alternativa para resolver esta problemática es la siembra Flor de Mayo M38, lo cual permite mejorar el potencial de rendimiento en estas áreas, la cual fue desarrollada por selección nasal a partir de una línea del CIAT. Este
material ha sobresalido por su alto potencial de rendimiento rebasando al Flor de Mayo Bajo en 27% en siembras de verano en la región de Celaya. Esta variedad es tolerante a roya, mosaico común y tizón común. Con relación a la aceptación sensorial el material tiene un comportamiento similar al Flor de Mayo Bajo y su tiempo de cosecha el ligeramente superior a éste. El objetivo fue validar la variedad Flor de Mayo M38 bajo riego y temporal del estado de Guanajuato y compararlo contra el principal testigo Flor de Mayo Bajo, Flor de Junio Criollo y otros genotipos sembrados por el productor, y recabar la opinión de los productores en tomo a la nueva variedad y su posible adopción.

Se establecieron parcelas de validación con productores cooperantes en verano, en surcos a doble hilera. Los resultados indican que la variedad Flor de Mayo M38 fue superior a los testigos de los productores. El promedio de rendimiento para Flor de Mayo M38 y Flor de Mayo Bajo (testigo) bajo riego fue de 3190 y 2493 kg ha$^{-1}$ respectivamente, esto quiere decir una ganancia 27.96% a favor del primero; cuando se compara con Flor de Junio Criollo fue 2544 y 2391 kg ha$^{-1}$ respectivamente o sea una ganancia de 6.4% a favor del primero; y al compararlo con otras variedades usadas por el productor los rendimientos fueron 2520 y 1036 kg ha$^{-1}$ respectivamente, o sea una ganancia de 143% a favor del primero. En temporal los rendimientos para M38 y Bajo fueron 1456 y 1283 kg ha$^{-1}$ respectivamente, o sea una ganancia de 13.48%.

Con relación a las opiniones de los productores sobre la nueva variedad tenemos las siguientes: La nueva variedad tiene un mayor tamaño de granos, más aceptable que Flor de Mayo Bajo, un color mas firme o un rosa más intenso, mejor mercado y más fácil comercialización debido a las dos características anteriores, tolerante a la sequía, por lo cual es una mejor opción para condiciones de temporal, más tolerante al ataque de plagas, como pucio del epiófito y borreguillo o concluida del frijol y más precoz que el Flor de Junio Criollo.
Todos los productores piensan guardar semilla para futuras siembras.

1.2.9. CARACTERIZACIÓN DE COMPUESTOS FENÓLICOS EN FRIJOL COMÚN Y FRIJOL AYOCOTE

1Núñez López María Alejandra, 2Salvador Horacio Guzmán Maldonado, 3Rita Miranda López y Jorge Alberto Acosta Gallegos.

1,2 Instituto Tecnológico de Celaya Antonio García Cuñas exq. Av. Tecnológico, Celaya, Gto. 3 Unidad de Biotecnología, Laboratorio de alimentos del Instituto Nacional de Investigaciones Agropecuarias (INIFAP) Carretera km 6.5. Celaya-San Miguel de Allende.

El frijol es un alimento básico en la alimentación que tiene diversos polifenoles antioxidantes asociados con la prevención de enfermedades crónicas y algunos tipos de cáncer10). La fracción mayoritaria de estos compuestos pertenecen a la familia de los taninos, siendo errónea su cuantificación por métodos colorimétricos, ya que la utilización de un solo estándar solo es aplicable en control de calidad y no es suficiente para un estudio de interés nutricional10) y mientras se desconozca el perfil de ácidos fenólicos entre las variedades, no se puede establecer un método específico para la determinación de polifenoles en frijol. El objetivo del presente trabajo fue determinar el contenido de taninos y caracterizar compuestos fenólicos en algunas de las variedades de mayor consumo en nuestro país de frijol común (Phaseolus vulgaris L.) y de frijol ayocote (Phaseolus coccineus L.) para establecer bases para la selección de el método más adecuado para la determinación de compuestos fenólicos en el frijol. También visualizar los cambios de concentración que pueden sufrir los polifenoles en el proceso de cocción.

24
Utilizaron variedades de frijol común (Flor de Mayo Anita, Pinto Zapata, Negro 8025, Flor de Junio Marcela) y frijol ayocote (Blanco Tlaxcala, Ayocote Negro, Ayocote Morado) para determinar los taninos por el método de la vainillina y el perfil de ácidos fenólicos por Cromatografía Líquida de Alta Resolución (HPLC). Se hicieron determinaciones en testa, frijol entero crudo y cocido. Con respecto al contenido de taninos, en testa y frijol entero el valor más alto lo presentó el Ayocote Negro, el menor Blanco Tlaxcala y las demás variedades presentaron valores intermedios; algunas no tuvieron diferencias significativas entre sí (Cuadro 1).

Cuadro 1. Contenido de taninos totales en frijol común y frijol ayocote en testa y grano entero crudo.

<table>
<thead>
<tr>
<th>Variedad</th>
<th>Testa mg eq cat/kg</th>
<th>Entero mg eq cat/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ayocote Morado</td>
<td>3.8 e</td>
<td>0.4 b</td>
</tr>
<tr>
<td>Ayocote Negro</td>
<td>5.1 a</td>
<td>0.4 a</td>
</tr>
<tr>
<td>Blanco Tlaxcala</td>
<td>8.8 x 10^-4 f</td>
<td>7.7 x 10^-4 e</td>
</tr>
<tr>
<td>Flor de Mayo Anita</td>
<td>3.7 d</td>
<td>0.3 e</td>
</tr>
<tr>
<td>Flor de Junio Marcela</td>
<td>4.8 b</td>
<td>0.4 a</td>
</tr>
<tr>
<td>Negro 8025</td>
<td>3.8 d e</td>
<td>0.3 d</td>
</tr>
<tr>
<td>Pinto Zapata</td>
<td>3.5 e</td>
<td>0.3 d</td>
</tr>
</tbody>
</table>

a-f Medias con letras iguales en columnas no son estadísticamente diferentes (p>0.05).

En el Cuadro 2. se presentan algunos resultados relevantes. No todos los polifenoles estuvieron presentes en todas las variedades, tampoco en todas las partes del grano analizadas. La concentración de ácidos fenólicos cambió de frijol crudo a cocido. Hubo picos identificados de crudo a cocido que aparecen y en algunos casos desaparecen, estos casos no son debido a fallas de la técnica sino a reacciones químicas como polimerización u oxidación, aún no se ha podido definir esto.
El Ayocote Morado presentó el mayor número de ácidos fenólicos identificados.

Cuadro 2. Concentración de compuestos fenólicos (HPLC) en tres variedades de fríjol.

<table>
<thead>
<tr>
<th>Variedad</th>
<th>Testa (g/kg muestra)</th>
<th>Crudo (mg/kg muestra)</th>
<th>Cocido (mg/kg muestra)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Morado</td>
<td>2.4</td>
<td>0.9</td>
<td>1.3</td>
</tr>
<tr>
<td>Gallo</td>
<td>4.2</td>
<td>1.7</td>
<td>1.4</td>
</tr>
<tr>
<td>Catequiza</td>
<td>ND</td>
<td>2.4</td>
<td>1.9</td>
</tr>
<tr>
<td>Clarogenico</td>
<td>2.0</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Vainillina</td>
<td>ND</td>
<td>0.9</td>
<td>1.3</td>
</tr>
<tr>
<td>Benzoico</td>
<td>ND</td>
<td>0.6</td>
<td>0.4</td>
</tr>
<tr>
<td>Protoarcoceo</td>
<td>1.7</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>FJ Marcela</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gallo</td>
<td>0.4</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Catequiza</td>
<td>6.9</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Clarogenico</td>
<td>3.8</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Siringico</td>
<td>5.1</td>
<td>1.3</td>
<td>ND</td>
</tr>
<tr>
<td>Vainillina</td>
<td>18.5</td>
<td>4.9</td>
<td>1.9</td>
</tr>
<tr>
<td>Negro 8025</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gallo</td>
<td>2.3</td>
<td>2.0</td>
<td>4.6</td>
</tr>
<tr>
<td>Catequiza</td>
<td>3.6</td>
<td>2.2</td>
<td>2.1</td>
</tr>
<tr>
<td>Siringico</td>
<td>3.4</td>
<td>0.9</td>
<td>0.5</td>
</tr>
</tbody>
</table>

ND = No detectados

El fríjol ayocote tuvo más contenido total y diversidad de polifenoles que el fríjol común. Flor de Junio adquirió polifenoles por herencia de un antecesor de testa negra de la cual se originó esta variedad liberada en el INIFAP. Los polifenoles se distribuyen en todo el grano de fríjol, algunos se encuentran en la testa, otros en los cotiledones y otros solo aparecieron en fríjol cocido. El conocimiento de los perfiles cromatográficos de compuestos fenólicos específicos por medio de HPLC es una buena opción para su identificación y determinación, mientras no se tengan datos precisos y extensivos de todas variedades no se puede recomendar un
método específico para cada variedad, puesto que los métodos colorimétricos tienen muchas limitaciones y fallas. En el cambio de frijol cocido a crudo la concentración de polifenoles aumenta o disminuye dependiendo de la variedad y de el compuesto que se trate, aún no se sabe con certeza la naturaleza de las reacciones involucradas.

LITERATURA CITADA

La baja disponibilidad de agua induce una serie de alteraciones fisiológicas en las plantas y una de ellas es la reducción en el intercambio de gases mediante el cierre del estoma y la concomitante disminución en la conductancia estomática. En la presente investigación se indagaron algunas respuestas fisiológicas del fríjol que se inducen cuando se deja de regar la mitad del sistema radical y la comunicación de este cambio al vástago. Para tal fin, se sembraron las variedades de fríjol (Phaseolus vulgaris L.) Pinto Villa (PV), tolerante y Bayo Madero (BM), susceptible en una cámara de ambiente controlado. A los 27 días después de la siembra se iniciaron los tratamientos: a) riego y b) riego-suspensión de riego, ambos bajo el sistema de riego dividida. El sistema se estableció en tubos de PVC de nore m de diámetro y 50 cm de alto, divididos verticalmente. Los tratamientos tuvieron una duración de 15 días y diariamente se cuantificó la conductancia estomática, las relaciones hídricas (potencial de agua, osmótico y turgencia) y el contenido de próluca. En BM las plantas expuestas al tratamiento riego-suspensión del riego mostraron una
disminución en la conductancia y un ligero incremento en el contenido de proliina. Lo anterior ocurrió sin que las plantas mostraran diferencias en relaciones hídricas en comparación con las de riesgo. Este comportamiento sugiere la existencia de comunicación no hidráulica entre la raíz bajo sequía y el vástago.

1.2.10. EVALUACIÓN DEL FUNCIONAMIENTO DE DOS MÁQUINAS TRILLADORAS DE FRIJOL

Julio Torres Sandoval\(^{10}\), Miguel Albaarrán Millán\(^{9}\), Juan Gabriel Ochoa Bjarro\(^{10}\) y Ramón Jiménez Regalado\(^{5}\).

(1), (2) Centro Nacional de Estandarización de Maquinaria Agrícola, Campo Experimental Valeta de México, Chapingo, México. Carretera México-Lechería km.18.5, Tel.: 01 595 95 46672, Fax 10 595 95 43103; e-mail: julotobjarro@hotmail.com.

En la búsqueda de incrementar la rentabilidad del proceso de producción agrícola se han implementado una serie de acciones como son: el mejoramiento genético de las plantas, el uso de agroquímicos para estimular el crecimiento, la producción o control de plagas y enfermedades, el manejo del suelo, entre otras muchas actividades que han permitido conseguir tal fin; en el caso particular del frijol se aplican muchas de estas técnicas y tecnologías.

Una de las tecnologías aplicadas al frijol es la mecanización del proceso de productivo, que permite disminuir los costos de producción, realizar las actividades de manera más rápida y eficiente, obtener un producto de mayor calidad y disminuir el uso de mano de obra.

En el proceso productivo del frijol se ha identificado la cosecha como la parte crítica y dentro de esta la trilla y limpieza de grano, provocado principalmente por la elevada cantidad de mano de obra y el tiempo que requieren para efectuarlas, lo cual incrementa de manera significativa los costos de producción. En este sentido se hace indispensable
el uso de máquinas para realizar estas actividades, por tal motivo se realizó la evaluación de dos modelos de máquinas trilladoras de frijol, para conocer su funcionamiento utilizando las recomendaciones de ajuste y mantenimiento dadas por el fabricante respectivo de cada una de ellas.

Los resultados obtenidos en estas pruebas fueron los siguientes:

Para el caso del primer modelo se obtuvo que la calidad del grano de frijol trillado de acuerdo a las muestras analizadas fue con un contenido de impurezas 1.13% y de grano dañado de 1.31%; las pérdidas totales de grano en la máquina de 1.29%.

El consumo de combustible de 1.758 L/h, con un tiempo de trabajo efectivo del 85.33%.

Para el caso del segundo modelo se obtuvo que la calidad del grano de frijol trillado de acuerdo a las muestras analizadas fue con un contenido de impurezas 0.178% y de grano dañado de 0.176%; las pérdidas totales de grano en la máquina de 2.07%.

El consumo de combustible de 1.819 L/h, con un tiempo de trabajo efectivo del 93.92%.

Los resultados obtenidos de la evaluación de los dos modelos de trilladoras, comprueban que la calidad del grano obtenido cumple con las exigencias de la norma mexicana NMX-PP-038-SFC-2000. “Productos alimenticios no industrializados para consumo humano-Fabáceas-Frijol (Phaseolus vulgaris L.) – especificaciones y métodos de prueba”, donde se indica que la calidad extra del grano de frijol debe contener un máximo de impurezas del 0.8 % y de granos partidos o quebrados de 1%, calidad que es cumplida por el segundo modelo evaluado; para el caso de calidad primera del grano de frijol debe contener un máximo de impurezas del 1.3% y de gramos partidos o quebrados de 3%, calidad que es cumplida por el primer modelo evaluado.

30
1.2.11. REMOVILIZACIÓN DE CARBOHIDRATOS Y RENDIMIENTO DEL FRIJOL COMÚN EN CONDICIONES DE SEQUÍA

Rigoberto Roaless Serna¹, Josué Kohashi Shibata², Jorge Alberto Acosta Gallegos³, Carlos Trejo López⁴, Joaquín Ortiz Cereceres⁴ y James D. Kelly⁵

En ambientes con sequía, el rendimiento del frijol (Phaseolus vulgaris L.) depende de la acumulación y removilización de carbohidratos durante el periodo reproductivo. El objetivo fue evaluar la importancia de la removilización de carbohidratos en relación con el rendimiento del frijol en condiciones de sequía. Se estableció un experimento el 3 de junio de 2003 en los invernaderos del Colegio de Postgraduados, en Montecillo, Edo. Mx. Se utilizaron cuatro variedades de frijol contrastantes en hábito de crecimiento y resistencia a la sequía. Se sembró en un diseño completamente al azar con arreglo factorial y 28 repeticiones. La unidad experimental consistió de una maceta de PVC, con 8 kg de suelo seco y una planta de frijol. El suelo utilizado, del orden Molisol, se esterilizó antes de colocarlo en las macetas y después se fertilizó con 2 g por maceta de la dosis 30-30-00 (para N, P y K). Se evaluó el efecto del riego (R), seguía intermitente (SI) y seguía terminal (ST). El testigo (R) se regó constantemente para mantener la humedad disponible del suelo en un nivel superior al 80%, durante todo el ciclo biológico. En SI se
suspidió el riego durante la etapa vegetativa (25 días después de la siembra, DDS) y después de dar riego de recuperación cada tercer día durante una semana se suspendió definitivamente la aplicación de agua durante la floración (46 DDS). La ST coexistió en la suspensión definitiva del riego a los 46 DDS. Se determinó el peso seco y la concentración de carbohidratos no estructurales solubles, con el método de la antrona (Yemm y Willis, 1954), en los órganos de los estratos apical y basal del vástago, al igual que en la raíz. Se registraron los días a floración y madurez fisiológica.

Se observaron diferencias altamente significativas (p≤0.01) para todas las características, entre variedades y exceptuando días a floración entre condiciones de humedad. Las variedades resistentes a sequía mostraron valores altos para número de semillas, rendimiento diario e índice de cosecha, lo cual se relacionó con la eficiencia para la removilización de carbohidratos y el rendimiento. La precocidad a floración y la aceleración de la madurez favorecieron la adaptación en ST y SI. En SI, Pinto Villa acumuló carbohidratos en la raíz y la parte apical del dosel, lo cual podría relacionarse con el ajuste osmótico.

La SI redujo en un 78 % la concentración de carbohidratos totales y cuando la demanda fue baja se observó acumulación en la raíz y en los órganos vegetativos. La competencia más fuerte por carbohidratos fue entre la raíz y las semillas (r = -0.81**). La demanda ejercida por los órganos reproductores influyó significativamente en la producción, asignación y removilización de carbohidratos entre los órganos de la planta. La precocidad a floración y el establecimiento de un número alto de vainas y semillas favorecieron la eficiencia en la removilización de carbohidratos y el rendimiento. La concentración de carbohidratos mostró variaciones entre posiciones de los órganos en el dosel de la planta, condiciones de humedad y fechas de muestreo lo que puede provocar respuesta diferencial de las variedades a través de
ambientes y esto a su vez puede estar relacionado con el ajuste osmótico. Los principales procesos fisiológicos que han sido modificados por el mejoramiento genético para rendimiento en frijol común son la producción de fotoasimilados y la removilización de éstos hacia la semilla. Pinto Villa y G4523 pueden usarse en el mejoramiento genético del frijol en regiones sujetas a SI y ST.

1.2.12. EL FRIJOL: UN CULTIVO ALTERNATIVO AL MAÍZ Y SORGO DE TEMPORAL EN ACÁMBARO, GUANAJUATO

Marcial Fernández Rivera

1Centro Regional Morelia-UACH, m_fernan@correos.unam.mx

El municipio de Acámbaro, Gto., como el resto del bajo guanajuatense, se ha especializado en la produción de granos básicos, principalmente maíz y sorgo. En Acámbaro, la especialización es aún mayor porque en los últimos cinco años el 98 % de la superficie sembrada es de maíz y sorgo, y desaparecieron los cultivos de inverno como trigo y garbanzo (INEGI, 2003). Esta especialización en dos cultivos gramíneos, ha conducido a que se acentúen problemas fitosanitarios (proliferación de plagas, enfermedades y malezas) y al uso excesivo de fertilizantes, particularmente nitrogenados, lo que hace urgente introducir un cultivo tipo leguminosa que pueda entrar en rotación con el maíz y sorgo (Fernández, 2004). El frijol de mata puede ser una opción, si su rendimiento y precio de la semilla dan márgenes de utilidad equivalentes a los del maíz y sorgo, y la producción y mercado son relativamente estables en los años. En 2003 se evaluaron 35 variedades criollas y mejoradas de frijol en condiciones de temporal en el municipio de Acámbaro. El rendimiento y utilidades promedio de las mejores diez variedades se compararon con los diez mejores materiales de
maíz y sorgo sembradas en experimentos adyacentes. Los costos de producción se estimaron según el manejo tradicional de los cultivos y el valor de la producción se calculó con base en los precios locales en 2003 y en maíz y sorgo se consideró además ingresos por venta de esquillos. En el Cuadro 1 se observa que los el frijol y sorgo tienen costos de producción similares y más bajos que el del maíz, que el rendimiento de las mejores diez variedades de frijol fue de 1046 kg ha⁻¹, y que aún cuando en frijol las utilidades son negativas, son similares a las del sorgo y poco distantes de las del maíz. Considerando que el año 2003 fue excesivamente lluvioso y por lo mismo poco propicio para el crecimiento del frijol, en el trabajo se concluye que el frijol puede ser una buena opción como cultivo alternativo al maíz y sorgo en Acámbaro, Gto.

<table>
<thead>
<tr>
<th>Atributo</th>
<th>Frijol</th>
<th>Maíz</th>
<th>Sorgo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rendimiento de grano (kg ha⁻¹)</td>
<td>1046</td>
<td>3537</td>
<td>2949</td>
</tr>
<tr>
<td>Costos de producción ($ ha⁻¹)</td>
<td>4808</td>
<td>5785</td>
<td>4885</td>
</tr>
<tr>
<td>Ingresos ($ ha⁻¹)</td>
<td>4707</td>
<td>6336</td>
<td>4999</td>
</tr>
<tr>
<td>Utilidades ($ ha⁻¹)</td>
<td>-101</td>
<td>551</td>
<td>114</td>
</tr>
</tbody>
</table>

LITERATURA CITADA

INEGI. 2003. Anuario estadístico del estado de Guanajuato. INEGI. México, DF.

José Cruz Jiménez Galindo; Ernestina Valdez Moctezuma*, Nahum Marban Meadoza; Hilda Victoria Silva Rojas y Aquiles Carballo Carballe.

Los marcadores de ADN son secuencias en un mismo locus que diferencian en su información química. Dependiendo de la técnica empleada para su detección, pueden comportarse como dominantes o coxominantes; además, son estables, sin efectos pleotrópicos y no son afectados por el ambiente. Estas propiedades los hacen extremadamente útiles, comparados con marcadores morfológicos o bioquímicos (Valadez, 2000). La tecnología de PCR ha sido muy eficiente para la búsqueda de marcadores. Estos se han utilizado por ejemplo, en estudios de evolución de la domesticación del frijol común, diversidad de especies con fines taxonómicos, caracterización de genomas, detección y aislaniento de genes; y por supuesto, diferenciación de organismos relacionados genéticamente (Welch and Mc Clend, 1990, Quiroz et. al., 1991; Howell et. al., 1994).

Con base a la relación que algunos marcadores presentan con caracteres fenotípicos de interés, el presente trabajo tuvo como objetivo buscar marcadores de ADN asociados a resistencia o susceptibilidad a Fusarium oxysporum f. sp. phaseoli (Fop) en frijol. Se realizaron cruzamientos de frijol común Bayo Cuarentero y Pinto Americano (Phaseolus vulgaris L.) con frijol dépari (Phaseolus acutifolius Asa Gray), que presentan fenotipos contrastantes de resistencia y susceptibilidad a Fop. Tanto los progenitores como las progenies F₁ y F₂ expuestos al ataque de Fop fueron analizadas con la técnica de DAF-PCR. Los productos de PCR se separaron en geles de acrilamida 5% y los genotipos bajo estudio se compararon en función de los polimorfismos que exhibieron.
La comparación de las huellas de ADN permitió detectar polimorfismos nuevos en la progénie F₁, indicando el éxito de las cruces realizadas. Respecto al análisis tanto de los progenitores y progénies F₁ y F₂ expuestos al ataque de Fop, se detectaron bandas polimórficas de ADN asociadas a resistencia y susceptibilidad al hongo fitopatogénico, así como polimorfismos nuevos que aparecen quizás debido a la combinación genética y que no están presentes en los progenitores. Este último tipo de resultados concuerda con lo que señalaron Michelmore et. al. (1991), quienes mencionan que una población F₂ provee mayor amplitud genética que una población derivada de un retroruce. También los resultados están de acuerdo con Beebe y Pedraza (1998), quienes señalan al frijol como un cultivo atractivo para marcar genes de resistencia ya que exhiben bastante polimorfismo para estudios de ADN.

LITERATURA CITADA

12.14. PÚBRECENCIA Y DENSIDAD ESTOMÁTICA EN RELACIÓN CON LA RESISTENCIA A ROYA EN FRIJOL

Gabino Ortiz Vázquez1, María Antonieta Goytía Jiménez1, Rigoberto Rosales Serna2 y Gerardo Leyva Mir2

1Universidad Autónoma Chapingo. km 38.5 Carretera México-Veracruz. Texcoco, Edo de México. C.P. 56230. Tel. 31(55)9521500, correo-e: gabinovma@yahoo.com.mx, mgoytia02@hotmail.com; 2Campamento Experimental Valle de México-INIFAP. km 18.5 Carr. Los Reyes-Lechería. A.P. 307, C.P. 56101. Tel. 31 (55)9542277 ext. 134, correo-e: rigoberto_serna@yahoo.com

Entre los factores que reducen el rendimiento del frijol común se encuentran las enfermedades como la roya [Uromyces appendiculatus (Pers.) Unger var. appendiculatus], que al combinarse con la susceptibilidad de la variedad de frijol, puede ocasionar pérdidas totales del rendimiento. El objetivo fue identificar mecanismos de resistencia al ataque de la roya en frijol de diferentes razas y acervos genéticos. Se sometieron las variedades de frijol Negro Coataxtla 91, Pinto Bayacora, Rayado Rojo, Flor de Mayo Soi, Flor de Mayo RMC, Chivá Bushera, Negro INIFAP y como testigo susceptible la variedad Pinto UI 114. Se sembró en el Campamento Experimental Valle de México del Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP). Se utilizó un diseño en bloques al azar, con dos repeticiones para cada variedad. La parcela experimental consistió de dos surcos con cinco metros de longitud y una separación de 60 cm. Se estableció una densidad de población promedio de 13 plantas por metro lineal. En el campo se evaluó susceptibilidad de las
variedades en condiciones de infestación natural de roya y en laboratorio se cuantificó el número de estomas y tricomas en la superficie haz y envés de la lámina foliar.

Las condiciones meteorológicas permitieron el desarrollo de los cultivares y también favorecieron la incidencia de las enfermedades, lo que afectó considerablemente a las cultivares susceptibles a roya. Con base en las lecturas de campo los cultivares Pinto UI 114, Chivá Busera y Flor de Mayo RMC resultaron susceptibles y los demás fueron resistentes al daño de la roya. Las variedades susceptibles mostraron mayor tamaño y densidad de pústulas por cm² con respecto a los resistentes.

Los estomas y tricomas de la superficie haz y envés de la lámina foliar estuvieron asociados con la resistencia a roya. En la variedad Negro INIFAP, la resistencia estuvo relacionada con la reacción de hiperreactividad. La pubescencia y las características estomáticas son importantes características que influyen en la reacción a roya en frijol, aunque otros factores modifican la respuesta a esta enfermedad.

La disposición y el número de estomas están relacionados con la facilidad de infección del hongo causante de la roya del frijol. El número y morfología de los tricomas influye en la reacción a roya en el cultivo del frijol. Se observó variabilidad genética para las características relacionadas con la resistencia a roya y pudieron identificarse variedades, como Rayado Rojo, que pueden ser utilizadas como fuentes de resistencia para el mejoramiento genético del frijol.
En Costa Rica el cultivo de frijol es una actividad económica importante a la cual se dedican pequeños, medianos y grandes productores; no obstante, en los últimos años la producción ha sido desestimulada debido a la baja rentabilidad del grano, problemas climáticos y de comercialización. En nuestro país se practican tres sistemas de producción: seminecianizado (50 % del área), espeque (45 %), y tapado (5 %); este último con tendencia a desaparecer. El país consume un 65 % de grano negro de las variedades Branca y Guaymi, y un 35 % de grano rojo de las variedades Chirripó, Bribri, Cabécar y Telare; aunque el agricultor siempre otras variedades criollas o no certificadas.

La siembra se realiza en terrenos con pendiente leve a moderada (región norte), y de moderada a pronunciada (región bruncana). En la primera región la mayor parte del área se siembra en terrenos mecanizados, sin embargo, en los últimos años algunos agricultores han implementado la siembra en labranza cere. En la otra región, la mayor parte del área se siembra a espeque.

Las principales enfermedades que afectan el cultivo son: Mustia Hilachosa (Thanatephorus cucumeris), y Mancha Angular (Pseuokternpsis griseola), aunque en la región bruncana también es importante la Antracnosis (Colletotrichum lindemuthianum). Entre las plagas insectiles más importantes están: Vaquitá (Dihydroica spp), Lorito Verde (Empoasca kraemerii), y perforador de la vaina (Maruca testulalis). Entre las malezas más importantes están: Ziklate invasor
1.3. RESÚMENES DE PRESENTACIONES EN CARTEL

1.3.1. CRECIMIENTO Y RENDIMIENTO DEL FRIJOL EN SUELOS SALINOS DE MONTECILLO, ESTADO DE MÉXICO

J. Alberto Escalante Estrada, María Teresa Rodríguez González y Mario Gutiérrez Rodríguez

Programa de Botánica, Instituto de Recursos Naturales. Colegio de Postgraduados, Montecillo, Edo. Méx. México. C.P. 56230, correo-e: jase@colpos.mx, marte@colpos.mx, mario@colpos.mx

El área de estudio de Montecillo Méx., presenta suelos salinos con un mosaico de concentraciones. Su vegetación es principalmente halófita, destacando el zacate salado (Distichlis spicata L.) y el romerito (Suárez nigra L.) (Gutiérrez y Ortiz, 1999). En las áreas esquistadas para la agricultura mediante lavados y aplicaciones de yeso entre otros, predomina la agricultura de secano donde se cultiva frijol entre otras especies de interés económico el cual es sensible a la salinidad, con un umbral de conductividad eléctrica (CE) de 1 dS m⁻¹ y que a valores superiores, el rendimiento disminuye en 19% por cada dS m⁻¹ de aumento (Maas y Hoffman, 1977). Debido a esto, el crecimiento del frijol es bastante lento. Para el caso de Montecillo, los rendimientos obtenidos fueron de 200 kg/ha y la productividad promedio de 100 kg/ha. A pesar de las condiciones adversas, las técnicas de manejo adecuadas pueden mejorar estos resultados.
frijol en ésta región es limitado y en la mayoría de los casos la producción es baja o nula. No obstante, es de esperarse que el suministro de agua proveniente de la lluvia o riego, reduzca la concentración de sales en el suelo y con la búsqueda de cultivares de frijol que puedan sobrevivir y crecer bajo dichas condiciones se logre una mayor producción y este fue el objetivo del presente estudio.

El estudio se realizó durante 1997 y 2000 en Montecillo Méx., (19°N,48°Oy 2248 msnm) en un suelo arcilloso, con pH entre 8.0 y 8.7, CE de 7 a 15 dS m⁻¹ y el sodio intercambiable (%) entre 9.7 y 37.0. El clima es BSj, el menos seco de los áridos. En 1997, la siembra se realizó el 5 de junio a la densidad de 13.3 plantas m⁻² en surcas de 70 cm, con los cultivares de frijol (P. vulgaris L.) de crecimiento indeterminado arbustivo y de diferente color y tamaño de semilla siguientes: Negro Precoz (NP), criollo Tequexquihuatl (CT), Morito de Coatlinchán (MC), Ojo de Cabra (OC), Flor de Mayo (FM) y de P. coccineus L. “Ayocote” (AYO). En 2000, la siembra se realizó el 19 de junio con los cultivares de P. vulgaris L. de hábito indeterminado, Bayomex (BA), criollo Tequexquihuatl (CT) y Canario 107 (Canario) de hábito determinado y P. coccineus L. y “Ayocote” de hábito indeterminado, a una densidad de 12.5 plantas m⁻² en hilera de 40 cm de distancia. En ambos años, el diseño fue bloque al azar con 4 repeticiones.

En 1997, los cultivares mostraron diferentes días a floración. CT fue el más tardío (68 días después de la siembra, dds), seguido de FM con 60, MC con 54, NP con 46, OC con 43 y AYO con 40 dds. El rendimiento (g m⁻²) también mostró diferencias entre cultivares. Así, NP mostró el rendimiento más alto con 151.6 g m⁻², seguido de AYO con 136 g m⁻², CT con 130 g m⁻², con MC con 126 g m⁻². A OC y FM correspondió el rendimiento más bajo con 54 y 70 g m⁻², respectivamente. En el 2000, los cultivares mostraron diferencias en los días a madurez fisiológica (MF). Así, para Canario y BA fue entre
80 y 100 dds, respectivamente. Para AYO y CT fue de 120 dds. El rendimiento más alto correspondió a BA con 222.5 gm³, seguido de AYO, CT y Canario, con 172, 109 y 73 gm³, respectivamente. En ambos años los cambios en el rendimiento se relacionaron con cambios en el número de vainas y racimos por m². Estos resultados sugieren que las diferencias en sensibilidad a la salinidad, mostrada por los cultivares de Phaseolus, puede ser aprovechada para lograr incrementos en la producción en regiones salinas con la siembra de cultivares con mayor tolerancia a este factor.

LITERATURA CITADA

1.3.2. PRODUCCION DE FRÍOJO EN SUELOS ALCALINOS DE MONTECILLO, ESTADO DE MÉXICO

J. Alberto Escalante Estrada, Ma. Teresa Rodríguez González y Mario Gutiérrez Rodríguez.

Programa de Botánica, Instituto de Recursos Naturales. Colegio de Postgraduados, Montecillo, Ed. de Méx. 56230, correo-e: jaseo@colpos.mx, mate@colpos.mx; mariog@colpos.mx

En México algunas áreas cultivadas se caracterizan por un alto pH en el suelo. Esto causa problemas con la disponibilidad de nutrientes para los cultivos, hierro por ejemplo (Tisdale y Nelson, 1988). Los reportes indican que el frijol es altamente sensible a la deficiencia de hierro.
Clark, 1991). Así, se espera que las siembras de frijol en estas áreas muestren síntomas de deficiencia de éste nutriente y en consecuencia un rendimiento más bajo. Una manera de evitar esto es identificar cultivares que puedan crecer y generar un rendimiento aceptable bajo estas condiciones, el cual fue el objetivo de este trabajo.

El estudio se realizó en Montecillo Méx., en un suelo arcilloso con pH de 8.0 a 8.12, una conductividad eléctrica (CE) de 0.556-0.962 dS m⁻¹. Los cultivares de frijol (P. vulgaris L.) arbustivo con semilla de diferente tamaño y color que se sembraron el 7 de julio de 1995, a la densidad de 13.3 plantas m⁻² en surcos de 70 cm de distancia fueron: Canario 107 (C107), Cacahuate 72 (C72) de hábito determinado; y Negro Perla (NG), Negro Precoz (NP), Ojo de Cabra (OC), Bajo Madeso (BM), Flor de Mayo (FM), Flor de Durazno (FD), Michoacán 15-A-3 (M12), Crisollo Tequexquinahuac (CT) y Ayocote (AYO) (P. coccineus L.) de hábito indeterminado.

El diseño experimental fue bloqueos al azar con cuatro repeticiones. Se evaluó la germinación, sobrevivencia (%), cociente entre número de plantas a la cosecha y densidad de población por cien), fenología, rendimiento y sus componentes en los cultivares en estudio.

Los resultados indican que la germinación (%) fue del 95%. El inicio de floración (IF) se observó a los 52 DDS y la madurez fisiológica (MF) a los 105 DDS en NP, FD, AYO, OC, C72 y C107. Otros cultivares mostraron el IF y MF a los 62 y 120 DDS, respectivamente. Desde los 39 días después de la siembra (DDS) los cultivares M12, C72, NG y CT mostraron severos síntomas de deficiencia de hierro; en menor grado FM, BM, OJ, FD y C7; NP y AYO no mostraron. La sobrevivencia fue superior al 80% en FD, NP y AYO; 49% para OC y C107; menos del 30% para BM, M12 y FM. No sobrevivieron C72, NG y CT.

El rendimiento más alto correspondió a FD, NP y AYO con 152, 72 y 68 g m⁻², respectivamente; y el más bajo a OC, C7,
BM, M12 y FM. Los cambios en el rendimiento se relacionaron con el número de vainas m\(^2\) y la sobrevivencia (%). No se logró producción con C72, NP y CT. Estos resultados sugieren que es posible incrementar la producción en éstos suelos con el uso de cultivares de menor sensibilidad a los desórdenes ocasionados por el pH alto del suelo.

LITERATURA CITADA

1.3.3. BIOMASA Y RENDIMIENTO DE FRIJOL (Phaseolus vulgaris L.) DE SECANO EN FUNCIÓN DE LA FECHA DE SIEMBRA

J. Alberto Escalante Estrada, María Teresa Rodríguez González, Mario Gutiérrez Rodríguez y L. Enrique Escalante Estrada

Botánica-IRENAT. Colegio de Postgraduados. Montecillo, Edo. de México, C.F. 56230 y Colegio Superior Agropecuario del Estado de Guerrero. Iguala, Guerrero. Correo-e: jaue@colpos.mx; mate@colpos.mx; mariog@colpos.mx

En los cultivos de secano, es importante la siembra oportuna al inicio de las lluvias para asegurar que el cultivo no sufra de un mayor déficit de agua que el ocasionado por la sequía intraestival. Un retraso en la fecha de siembra dejaría al cultivo con menor disponibilidad de agua durante el ciclo, lo que podría reflejarse en un menor crecimiento y rendimiento. Esto ha sido motivo para que algunos agricultores decidan no realizar sus siembras. En el estado de Guerrero el frijol es un cultivo de importancia cuya producción depende principalmente de la cantidad y distribución de la
precipitación durante la época de lluvias. El objetivo de este estudio fue determinar el efecto del retraso en la fecha de siembra sobre el crecimiento y rendimiento del frijol de temporal en clima cálido.
El estudio se realizó en Iguala Gro. (18° 25' N, 99° 35' O y 731 rasn de altitud) de clima cálido subhúmedo) y suelo de textura franco-aríncoloso, pH 7.5, sin problemas de salinidad (0.18 ds m⁻³). El cultivo anterior fue maíz. Los cultivares de frijol Canario 107 (Canario) de hábito determinado y Michoacán 12-A-3 (Mich) de hábito indeterminado arbustivo, se sembraron el 28 de junio, 12 y 26 de julio, a una densidad de 13.3 plantas m⁻² en surcos a 75 cm de distancia. La fertilización aplicada antes de la siembra fue 40-40-00 de NPK.
Los cultivares en estudio mostraron diferencias en cuanto al inicio de floración (IF). Así, el IF fue 6 días más temprano en Canario (31 dda) que en Mich (37 dda). No obstante, la maduración fisiológica (MF) fue a los 80 dds en ambos cultivares. Si bien la duración del período reproductivo fue más largo en Canario, el rendimiento fue mayor en Mich. Por otra parte, en ambos cultivares, el IF se retrasó entre más tarde fue la siembra, en contraste, el período de siembra a MF se acortó. Esto se relacionó con la cantidad de agua disponible proveniente de la lluvia, la cual fue de 509, 421 y 391 mm para la siembra del 28 de junio, 12 y 26 de julio, respectivamente y con un rendimiento más bajo conforme a lo tardío de la siembra. Así, en Canario este fue de 93, 73 y 26 g m⁻²; y en Mich de 202, 142 y 48 g m⁻², respectivamente. Tendencia similar se observó en la producción de biomasa, la cual fue mayor en Mich (300 g m⁻²) con respecto a Canario (181 g m⁻²).
El frijol con severas limitantes de agua (siembras más tardías) produjo un número más bajo de nudos, racimos, vainas, semillas m⁻² y peso promedio de semilla. Estos resultados indican que la menor disponibilidad de agua (hasta de 30%) debió a la siembra tardía en la época de lluvias
podría conducir a reducciones en los componentes del rendimiento y en consecuencia hasta del 75% en la producción de frijol en clima cálido. No obstante, el rendimiento de Mich (aprox. 0.5 ton ha\(^{-1}\)) logrado con la siembra más tardía (25 de julio) podría considerarse como aceptable, lo que sugiere que la siembra de éste cultivar puede recomendarse cuando dicha situación ocurra.

LITERATURA CITADA

1.3.4. FERTILIZACIÓN FOLIAR DE FRIJOL EN DOS AMBIENTES DE TEMPORAL EN CHAPINGO, ESTADO DE MÉXICO

Samuel Sánchez Domínguez\(^1\) y **M. Chan Dzul**\(^2\)

\(^1\)Profesor-investigador, Academia de Cultivos Básicos, Departamento de Fitotecnia, UACH. correo: samuel2003@correo.chapingo.mx.

\(^2\)Egresado de Fitotecnia, generación 2001, titulado el día 19 de abril del 2003.

Una de las causas que limita la productividad de los cultivos en general y la de las leguminosas en particular, es la deficiencia de micronutrientos en los suelos, que han estado bajo cultivo intenso con gramineas durante muchos años. En el caso del frijol, los resultados de la fertilización foliar son múltiples y un tanto contradictorios. Por lo anterior para evaluar los efectos de la fertilización foliar en frijol se condujo la presente investigación durante el ciclo de verano del 2002, en condiciones de temporal (vecano) en los
loes San Martín 11 y San Pedro 2 del Campo Agrícola. Experimental de Fitoteenia (UACh). En San Martín se ensayó el factorial 5x2, conformado por los productos Agronil V, Algaenzimas, Sayfolán, Folisitín, y un testigo con sólo agua más fungicida en dos variedades de frijol de mata (Bayomex y Canario 107). En el lote San Pedro 2 se sembró la variedad Bayomex a la que se le aplicó los siguientes fertilizantes foliares: Agronil Plus, Agronil V, Algaenzimas y Gro Green más un testigo. Las dosis, aplicadas durante inicio de floración y en las etapas reproductivas de floración y llenado de vaina, fueron de aproximadamente 5 o 10 ml L⁻¹ de agua, que corresponden a dosis comerciales, recomendadas por los mismos fabricantes. En ambos experimentos se usó un diseño de bloque al azar con cuatro repeticiones. Las aspersiones del producto se hicieron siempre antes de las diez de la mañana usando el surfactante Inex. Las variables medidas y realizadas estadísticamente fueron determinadas en una muestra de diez plantas con compendio completa. Los resultados que se obtuvieron son para el experimento factorial de San Martín, no hubo diferencias entre variedades aunque, en términos absolutos, Bayomex siempre superó a Canario 107 en todas las variables de interés agronómico relacionas con el rendimiento. Entre productos foliares, el mejor fue Agronil V (regulador complejo del crecimiento), ya que mostró los más altos valores de peso de vaina normal, peso de grano normal o maduro, peso total de grano, peso de cien granos normales o maduros y rendimiento por hectárea, cuyos valores son 40,7, 30,2, 30,5, 45,7 g y 2,5 t ha⁻¹, respectivamente. Aunque no hubo diferencias estadísticas, dicho producto indujo un rendimiento 180 kg ha⁻¹ superior al testigo, lo que, a los precios actuales del grano, es suficiente para pagar el costo del producto y su aplicación. En San Peña 2, en la variedad Bayomex no se notó ningún efecto positivo por la aplicación
de los fertilizantes foliares, ya que en mueve de las variables el mejor producto fue superado por el testigo. Esto conduce a pensar que no obstante que los suelos de dicho lote son aparentemente infértiles tienen un aceptable grado de fertilidad. Sin embargo, al comparar los datos de los dos experimentos para la variedad Bayomex y para los productos que fueron comunes (Agromil V y Algaenizimas), se muestra que el peso total de grano en San Martín fue de 30.5 y 28.4 g contra sólo 12.8 y 9.8 g en San Pedro 2, con Agromil V y Algaenizimas, respectivamente. Esto denota un mejor nivel de fertilidad de los suelos de la tabla San Martín. Los bajos rendimientos en San Pedro 2 parecen deberse a un efecto de una sequía en la etapa vegetativa, que perjudicó más el crecimiento de las plantas de este lote, que a las del de San Martín 11, donde la profundidad y capacidad de retención de agua del suelo es mayor.
2. MESA 2. COMERCIALIZACIÓN
2.1.1 POLÍTICAS PARA FOMENTAR LA COMERCIALIZACIÓN DEL FRIJOL EN MÉXICO

Nicolás Morales Carrillo

1Centro Regional Universitario Centro Norte de la Universidad Autónoma Chapingo, El Oriente, Zacatecas. Tel 492 9246147. E-mail: nmoralec@unimdea.net.mx

La presente investigación aborda un análisis de los costos de producción del frijol de temporal en Zacatecas y de las políticas implementadas por el gobierno para incidir en la comercialización del frijol. De acuerdo al rendimiento obtenido y al costo de producción, se fundamenta la necesidad de diseñar políticas diferenciadas que permitan a los productores seguir en la actividad de cultivar frijol.

En cuanto a la comercialización se observa que inicialmente el gobierno se retira del mercado y fomenta la integración de organizaciones de productores para que se apoyen del proceso de comercialización; sin embargo, a raíz de la poca madurez que logran las integradoras y el Consejo Mexicano del Frijol, el Estado vuelve a participar como un comprador de frijol importante y la mayoría de los recursos fiscales aprobados por el Legislativo se manejan por el propio gobierno, dejando a las organizaciones sin posibilidad de consolídate como comercializadores.
2.2. RESÚMENES DE PRESENTACIONES ORALES

2.2.1. ANÁLISIS DE LAS POLÍTICAS DE APOYO SISTEMA PRODUCTO FRIJOL

J. Reyes Altamirano Cárdenas

1Posencia en el IV Congreso Nacional del Frijol. Mesa 2. Comercialización.

2Profesor Investigador del Doctorado en Problemas Económicos Agroindustriales del CIESTAAM de la Universidad Autónoma Chapingo. correo-e: jreyeseta@taurus1.chapingo.mx

En esta presentación se aborda el análisis de las principales políticas de apoyo existentes para la producción y comercialización de frijol. Asimismo, se considera el contexto en el cual estas políticas operan puesto que la eficiencia de las políticas está fuertemente influenciada por la dinámica internacional en materia de producción, exportaciones, importaciones y por las políticas domésticas que establezcan otros países a su producción doméstica.

La política de apoyo en México se compone de pagos directos (Procampo), crédito agrícola, seguro agropecuario así como de instrumentos específicos como son el Programa del Fondo de Apoyo Especial a la Inversión de Frijol, el Convenio de Colaboración SAGARPA-ASERCA-FIRCO, el Esquema de Apoyo para la Atención a Factores Críticos de Comercialización de Productos Agrícolas, y el Subprograma de Pignoración de Frijol de Sonora, Sinaloa y Nayarit.

Se concluye que el conjunto de políticas de apoyo tienen un carácter coyuntural mientras que la producción y comercialización presenta fuertes problemas estructurales mismos que necesitan de instrumentos de política de mediano y largo plazo.
2.2.2. EL CULTIVO DEL FRIJOL EN COSTA RICA: PRODUCCIÓN Y COMERCIALIZACIÓN

José Joaquín Salazar¹

¹Consejo Nacional de Producción, Costa Rica.

La producción de frijol en Costa Rica decrece año con año, tanto en área de siembra como en el volumen de producción y por la salida de los agricultores de la actividad, las principales causas son los problemas de la comercialización y las perdidas causadas por las condiciones climáticas que afectan los rendimientos y la calidad del grano. Las zonas de mayor producción y las que presentan mejores condiciones agroecológicas son la Región Huéscar Norte, donde se destacan los cantones de Los Chiles y Upala, la Región Brunca donde sobresalen los cantones de Pérez Zeledón y Buenos Aires, en las demás regiones se produce básicamente para autoconsumo, en áreas pequeñas y con escasa tecnología. Los sistemas de siembra que predominan son la modalidad semimecanizada en labranza convencional y labranza de conservación con una dependencia alta de agroquímicos y la modalidad a esquepe con una dependencia media de agroquímicos, la modalidad tapado, que en su momento fue la más usada, ya que no se usa. El uso de variedades mejoradas con semilla certificada, disminuye año tras año, el agricultor ha adoptado por el uso de su propia semilla con los problemas ya conocidos de la calidad por germinación, vigor y patología. El Consejo Nacional de Producción mantiene el programa de producción y comercialización de semilla bajo el sistema de certificación de la Oficina Nacional de Semillas, donde se le garantiza al usuario la calidad de la semilla. El Programa de Investigación y Transferencia de Tecnología de Frijol (PITTA) continua con los trabajos de investigación enfocados al Fitomejoramiento para obtener variedades de mayor

52
potencial de rendimiento, tolerante a las principales plagas y enfermedades del cultivo, con color de grano de acuerdo a los gustos y preferencias del consumidor. La dependencia alimentaria sigue siendo mayor de otros países, las importaciones crecen cada año y la producción nacional disminuye.

Se ha presentado un cambio en el origen de las importaciones, en años anteriores el principal proveedor fue Argentina, en el año 2003 el 99% fue de Centro América, principalmente de Nicaragua. La comercialización se realiza, en la mayoría de los casos, entre las organizaciones de productores y algunas empresas empaquadoras, existen dieciocho plantas y unas treinta marcas de frijol empaquetado, que le ofrece al consumidor en presentaciones de 900 gramos, grano seco y limpio, con una norma de calidad establecida por decreto por parte del Ministerio de Economía Industria y Comercio, el cual debe contribuir al cumplimiento por parte de los comercializadores. Para las importaciones de frijol provenientes de países de Centro América, por el acuerdo del Convenio de Integración Centroamericano (CICA), no se aplica ningún arancel, para los países de terceros mercados el arancele aplicado es de un 30%. Las relaciones entre productores y comercializadores se han fortalecido, gracias a la consolidación y fortalecimiento de sus propias organizaciones con un sentido empresarial y gremial, los que les ha dado mayor poder de negociación en la comercialización de su producto, en las decisiones políticas y en la sostenibilidad de la misma actividad.
3. MESA 3. TRANSFERENCIA DE TECNOLOGÍA
3.1. RESUMENES DE CONFERENCIAS MAGISTRALES

3.1.1. VALIDACIÓN Y TRANSFERENCIA DE VARIEDADES MEJORADAS DE FRIJOL PARA TEMPORAL EN DURANGO

Evensr Idilio Cuéllar Robles1, Francisco Javier Ibarra Pérez2, Jorge Alberto Acosta Gallegos2

1 Investigador del Programa de Frijol del INIFAP. Campo Experimental Valle del Guadiana, Dgo. AP 181, Durango, Dgo.
2 Investigador del Programa de Frijol del INIFAP. Campo Experimental Bajío, AP 112, Celaya, Gto. 34000.

En México el cultivo del frijol fue desplazado de sus áreas originales de alto potencial, como el Estado de México, Jalisco y Michoacán, hacia superficies de menor precipitación, pero con mayor unidad de superficie por agricultor, a los estados norteños de Chihuahua, Durango y Zacatecas. La falta de mano de obra, el perfil socioeconómico del productor y el hecho de que el frijol sea la especie más remunerativa en temporada, entre otros factores, ha provocado que los agricultores de estas entidades lleguen a un nivel aceptable de eficiencia productiva. El cultivo del frijol en Durango es una actividad agrícola de gran importancia, la entidad ocupa el segundo lugar en cuanto a superficie sembrada y aporta el 13.4 % de la producción nacional. Anualmente se siembran en promedio 300 mil hectáreas, el rendimiento promedio de grano en temporal es de 450 kg/ha y en riego de 1000 kg/ha.

La producción de frijol en el Estado de Durango y en general en todo el Altiplano Semiarido que incluye a los Estados de Chihuahua, Zacatecas y Aguascalientes, suma una superficie de 1.2 millones de hectáreas, la producción se efectúa bajo un sistema de agricultura con baja utilización de insumos industriales y comercialización deficiente, con diversos
problemas de carácter tecnológico, organización y escasa posibilidad de desarrollo para sustentar posibilidades firmes de producción y productividad. Durante el 2003 se realizaron 20 cursos de capacitación para estudiantes, técnicos y productores de frijol y se establecieron 18 parcelas demostrativas. La capacitación se impartió en los meses de mayo y junio época de menor trabajo en los campos y tiempo que antecede a la presencia de las lluvias. El objetivo fue mostrar a los agricultores las novedades tecnológicas que tienen a su alcance como son paquetes tecnológicos, semillas de calidad, nuevas variedades, piletadoras, etc.
En resumen se atendieron a 683 personas, entre estudiantes, técnicos y agricultores, en los principales Distritos de Desatroll Rural y en ocho municipios de los más relevantes para la producción de frijol de temporal, se difundieron 16 variedades de frijol para temporal; entre estas se incluyeron cuatro nuevas variedades Flor de Mayo 2000, Negro Vizcaya, Pinto Saltillo y Pinto Zapata. En las demostraciones se tuvo una asistencia de 251 asistentes entre estudiantes, técnicos, agents de gobierno, comercializadores, productores de semilla y agricultores. En la localidad de Llano, Zaragoza las variedades de mejor respuesta fueron Negro Vizcaya 2,368, Pinto Saltillo 3,302, Pinto Villa 2,258 y Flor de Mayo M-38 2,236, con kg/ha respectivamente. La fecha de siembra fue el 7 de julio con buena disponibilidad de humedad en el establecimiento. La cosecha, el 17 de octubre, la primera belada se presentó el 28 de octubre y la precipitación durante el ciclo fue de 690 mm.
El manejo que dio el productor cooperante en la localidad I. Zaragoza fue excelente como lo muestra el rendimiento de las variedades. En general, las de ciclo más largo como Negro Vizcaya, Flor de mayo M-38 y Pinto Saltillo, rindieron más en comparación con las más precoces como Mestizo y Bayacora. En esta localidad se realizaron dos eventos formativos.

56
Cuadro 1. Fenología y rendimiento de ocho variedades de frijol establecidas bajo condiciones de temporal en 1. Zaragoza, Panuco de Coronado, Dgo. 2003

<table>
<thead>
<tr>
<th>No</th>
<th>Variedad</th>
<th>Días a Floración</th>
<th>Días a Madurez</th>
<th>Rendimiento kg/ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Negro Vizcaya</td>
<td>53</td>
<td>96</td>
<td>2,368</td>
</tr>
<tr>
<td>02</td>
<td>Pinto Sahillo</td>
<td>49</td>
<td>93</td>
<td>2,302</td>
</tr>
<tr>
<td>03</td>
<td>Pinto Villa</td>
<td>43</td>
<td>90</td>
<td>2,258</td>
</tr>
<tr>
<td>04</td>
<td>Flor Mayo M 38</td>
<td>49</td>
<td>96</td>
<td>2,236</td>
</tr>
<tr>
<td>05</td>
<td>Flor de Mayo Sol</td>
<td>43</td>
<td>85</td>
<td>2,230</td>
</tr>
<tr>
<td>06</td>
<td>Pinto Normal</td>
<td>40</td>
<td>85</td>
<td>2,014</td>
</tr>
<tr>
<td>07</td>
<td>Flor de Mayo 2000</td>
<td>43</td>
<td>90</td>
<td>1,973</td>
</tr>
<tr>
<td>08</td>
<td>Pinto Bayacora</td>
<td>38</td>
<td>85</td>
<td>1,877</td>
</tr>
</tbody>
</table>

Fecha de siembra: 7 de julio; Fecha de Cosecha: 17 de octubre; Fecha de primera helada: 28 de octubre; Periodo libre de heladas: 113 días

3.1.2. RESGUARDO LEGAL DEL GENMOPLASMA EN MÉXICO

Tayde Morales Santos

1Resumen de la Ponencia presentada en el IV Congreso Nacional del Frijol, convocado por el Comité Técnico de la Cadena Sistema Producto Frijol, el Programa Universitario de Investigación en Granos y Semillas de la UACh, el INIFAP y el Colegio de Postgraduados. Sede Universidad Autónoma Chapingo. Octubre 20-22,2004.

2Lic. En Derecho, Catedrática de la Universidad Autónoma Chapingo. Departamento de Ingeniería Agroindustrial. Tel.: (01-595) 95-5-27-40. E-Mail ramora@prodigy.net.mx

México, centro de origen y diversificación de una gran cantidad de plantas cultivadas, depositario de poblaciones silvestres y razas nativas de múltiples plantas comestibles que son reservorios de genes útiles e indispensables para la conservación de esas especies, no cuenta aún con una Ley de Acceso, Uso, Aprovechamiento y Conservación de los Recursos Genéticos, tan necesaria para el país por las

57
implicaciones económicas, ambientales, sociales y jurídicas que conlleva la protección legal de los recursos genéticos, así como la distribución justa y equitativa de los beneficios derivados de su comercialización.

La práctica de la biotecnología moderna, financiada en la aplicación de técnicas in vitro de ácido nucleico y en la fusión de células más allá de la familia taxonómica (UNEP/ONU, 2000), demanda de la manipulación del material genético implícito en las plantas, animales y microorganismos. Este que es su materia prima para la formación de plantas y variedades vegetales con caracteres inducidos en sus códigos genéticos, ha alcanzado un valor en los mercados que urge ser regulado de manera congruente con las necesidades sociales, económicas y ambientales del país.

El orden jurídico internacional en la materia, dominado por los países desarrollados y las empresas biotecnológicas monopolísticas ha definido en el Acuerdo sobre los Derechos de Propiedad Intelectual Relacionados con el Comercio (ADPIC) y en el Convenio de la Unión Internacional para la Protección de las Obtenciones Vegetales (UPOV), porqué, como y para qué debe resguardarse el germoplasma y cual germoplasma.

Así, los países megadiversos miembros de esos pactos han debido ajustar sus marcos legales a las definiciones impuestas por los capitales monopolísticos que implican la privatización de los productos y procesos del intelecto de materia viva inóctitas los genes. Ello ha configurado en los países en desarrollo, marcos jurídicos nacionales familiares y carentes de congruencia y correspondencia con sus propias necesidades de desarrollo y con el papel que están jugando como aportadores de conocimientos tradicionales asociados al patrimonio genético y como reproductores y enriquecedores in situ del germoplasma vegetal.

Por ello, para que el marco jurídico nacional sobre protección del germoplasma sea representativo de los
derechos de la nación y de quienes lo usan como mecanismo para su reproducción social, disminuyan los desequilibrios ambientales y las desigualdades entre los dueños de los recursos y los dueños de las patentes biotecnológicas, es necesario introducir en él una redefinición del concepto de Diversidad Biológica en el doble papel que hoy juega; como “Bien Común” a la vez que “Bien de Capital” y ubicar, con base en ello, una forma de propiedad no monopólica a que pueda estar sujeta ya que, si legalmente se le reconoce su naturaleza económica como fuente de mejoramiento y producción industrial de bienes de mercado, constituye también un factor material del proceso de trabajo, esto es, un moderno objeto de trabajo sobre el cual actúa el hombre con sus medios de trabajo, llamense técnicas empíricas, de biotecnología convencional o moderna, lo que objetivamente la convierte en un auténtico medio de producción y base de alimentación del pueblo.

3.1.3. IMPACTO ECONÓMICO DEL MEJORAMIENTO GENÉTICO DEL FRIJOL EN MÉXICO

Adrián González Estrada

1Resumen de la Conferencia Magistral, IV CONGRESO NACIONAL DE FRIOJOL, a celebrarse durante los días 20, 21 y 22 de octubre de 2004, en la Universidad Autónoma Chapingo, en el CEVAMEX-INIFAP y en el Colegio de Postgraduados.

2Líder Nacional del Programa de Economía Agropecuaria del INIFAP, Apartado Postal # 16, CEVAMEX, Chapingo, Estado de México. Teléfono: 595 95 428 77, Ext. 122. Fax: 595 95 465 20. Dirección de correo electrónico: gonzales.adrian@inifap.gob.mx

El objetivo principal del presente trabajo, es el de mostrar los resultados de las evaluaciones de impactos económicos inducidos por el programa de mejoramiento genético del frijol en México. El método seguido en la evaluación de los impactos económicos de las tecnologías aquí referidas se
basada en el procedimiento desarrollado por el International Food Policy Research Institute (IFPRI).

Las actividades de mejoramiento genético de plantas, llevadas a cabo por la Oficina de Estudios Especiales (OEE), el Instituto de Investigaciones agrícolas (IIA), el Instituto Nacional de Investigaciones Agrícolas (INIA) y el Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), durante el periodo 1942-2002, produjeron más de 1,067 nuevas variedades mejoradas de plantas. Desafortunadamente, no han sido documentados los impactos económicos de todas esas variedades mejoradas de plantas en el desarrollo del campo mexicano.

De acuerdo con Rosales-Serna, et al., (2004), la institución anterior liberó 142 variedades mejoradas de frijol durante el periodo 1943-2003. González-Estrada et al. (2003a, 2003b, 2004c, 2004d, 2004e), estimaron que las variedades de frijol: Pinto Villa, Flor de Mayo M38, Pinto Mestizo, Negro Sahuato y Pinto Bayacona, liberadas por el INIFAP, han tenido un impacto económico neto de 1,444.1 millones de pesos, desde 1994 (pesos del año 2002), equivalentes a 1.8 veces el presupuesto total de carácter fiscal del INIFAP ejercido durante el año 2003; la tasa beneficiocosto es 18.5:1 y la tasa interna de rentabilidad de la inversión es 23.37%, la cual supera, con mucho, tanto a la tasa real de interés, 9.5%, como a la tasa de rentabilidad social del capital libre de riesgo en México: 15.7%.

LITERATURA CITADA

3.2. FUENTES DE INFORMACIÓN AGROPECUARIA DE LOS PRODUCTORES DE FRIJOL DEL NOROESTE ZACATECANO

Guillermo Galindo González¹ y Román Zandate Hernández¹

El estado de Zacatecas, es el principal productor de frijol a nivel nacional, ya que participa con el 35% de la producción total; específicamente, en el 2003 se cosecharon 620,340 ha, con una producción de 391,608 ton, en condiciones de temporal; este cultivo es sembrado anualmente por alrededor de 92,400 agricultores y representa la actividad más importante, ya que cubre la cuarta parte del valor total de la producción agrícola. El 94% de la superficie que se cultiva con frijol se ubica en zonas de temporal, en donde se obtiene un rendimiento bajo. La principal zona productora de esta leguminosa se localiza en el noroeste del Estado, que comprende los municipios de: Sombrerete, Río Grande, Miguel Auza y Juan Aldama; en ésta, se localiza el 37.64% de la superficie total sembrada con frijol y es la que presenta el potencial más elevado para la producción de este grano, aunque también los rendimientos obtenidos actualmente son bajos; lo anterior, representa un vacío, entre el proceso de investigación y la adopción de nuevas tecnologías de producción disponibles, en diferentes instituciones presentes en el Estado.

Por otra parte, no se conocen las fuentes de información que utilizan los productores para recibir información agropecuaria, que permitan diseñar e implementar estrategias de difusión, para transferir innovaciones a este estrato de
productores. Por lo señalado, en el segundo semestre del 2003 se realizó un estudio descriptivo, para lo cual se tomó una muestra de productores (n=94), de un total de 16,169; para recopilar la información se diseñó y aplicó un cuestionario. Los resultados revelaron que son limitadas las fuentes de información que utilizan los productores para recibir mensajes agropecuarios y que los principales medios de comunicación que prefieren, son: demostraciones, pláticas y cursos de capacitación.

3.22. DEMANDAS TECNOLÓGICAS DE PRODUCTORES DE FRIJOL DE TEMPORAL EN EL CENTRO DE MÉXICO

Alfredo Tapia Naranjo y Jorge Alberto Acosta Gallegos

Desde principios de la década de los ochenta se inició un cambio de enfoque de la investigación orientado por la demanda tecnológica, proceso que se ha venido consolidado teniendo como características distintivas la implantación de fondos de concurso para la investigación, con la participación de productores en la toma de decisiones sobre la orientación de la investigación y la transferencia de tecnología, así como la constitución y formación de sistemas-producto o cadenas productivas bajo el amparo de la Ley de Desarrollo Rural Sustentable. Asimismo, la sustentabilidad de los centros de investigación generadores de tecnología, se convierte en una función de la satisfacción de las demandas tecnológicas que imponen los actores clave de los sistemas-producto. En este contexto, sistemas-producto como el frijol, no obstante que han mantenido en el tiempo la superficie cultivada y producción, el sistema se ve cada vez más amenazado por la
falta de competitividad y la importación de frijol, principalmente de Estados Unidos de Norteamérica. Con el fin de identificar las demandas tecnológicas de productores de frijol, como estándar de la producción primario de este sistema-producto, se llevó a cabo un sondeo exploratorio, como parte de información de primera mano, necesaria para complementar recientes estudios sobre el sistema-producto. Para ello se diseñó una guía de entrevista para productores de temporal para obtener datos sobre las siguientes variables: 1) Conocimiento del INIFAP; 2) Superficie cultivada con frijol; 3) Variedad utilizada y destino de la producción; 4) Rendimiento y 5) Problemas/demanda tecnológica. La entrevista se aplicó a una submuestra de 23 productores (32.8%) de un total de 70, que participaron en dos demostraciones de campo, en El Puebloito, municipio de Corregidora, Qro., y Providencia-Laguna de Guadalupe, municipio de San Felipe, Gto., ubicados en zonas de transición y altiplano, respectivamente. Se trata de dos condiciones diferentes, ya que mientras en el Puebloito la precipitación media anual se encuentra entre las isoyetas de 500 a 600 mm, con suelos verdes, profundos (más de 1 metro); Providencia-Laguna de Guadalupe la precipitación se encuentra entre las isoyetas de 400 a 500 mm, con suelos feezom de profundidad media (50-60 cm). Entre los resultados más sobresalientes destacan los siguientes: 1) El 77% de los productores no conocen al INIFAP; 2) La superficie cultivada con frijol varía desde 0.5 a 300 ha, predominando los productores con menos de 10 ha (56%), identificándose productores de 50, 100 y hasta 300 ha, entre los de mayor superficie, 3) Todos los productores de Providencia-Laguna de Guadalupe siembran la variedad criolla de color negro a la que denominan "Negro San Luis", cuya producción se destina al mercado y producen pequeños volúmenes de la variedad criolla "Media oreja" (300 a 1,500 kg) para consumo familiar; mientras que en El Puebloito, es común la siembra de semilla mejorada de los tipos flor de...
mayo como M 38, Bajío y, flor de junio como Marcela, cuya finalidad es el mercado, destinando lo necesario para el consumo familiar; 4) Por las condiciones agro-climáticas imperantes en cada localidad, del mismo modo el rendimiento es diferente; variando de 1.0 a 2.3 t ha\(^{-1}\) en El Pueblito, mientras que en Providencia-Laguna de Guadalupe, el rendimiento varió de 0.3 a 1.5 t ha\(^{-1}\), dependiendo de lo benigno del temporal; 5) En cuanto a problemas/demanda tecnológica, los productores señalan como el más importante la comercialización, destacando el bajo precio del producto, lo cual se asocia a baja calidad del grano por problemas de manejo y tamaño heterogéneo, así como la venta en época de mayor oferta de producto; como segundo problema/demanda, los productores mencionan en conjunto la maleza, plagas y enfermedades.

En el caso de la localidad de Providencia Laguna de Guadalupe, en particular se señala la maleza conocida vulgarmente como "aceitilla", le sigue como problema la dificultad para conseguir semilla de calidad, sobre todo en esta última comunidad; la aplicación de insumos es baja en la comunidad de El Pueblito, mientras que en Providencia-Laguna de Guadalupe es prácticamente nulo. En general, esta información será de utilidad para promover el posicionamiento del Instituto ante los productores, sobre todo apoyando la satisfacción de sus demandas tecnológicas, como buscar mecanismos para el acceso a semilla de calidad, mejorar los sistemas de siembra y captación de humedad \textit{in situ}, así como prácticas de manejo para mejorar la calidad de presentación del producto para su venta. En cuanto a la captación de problemas/demanda, la aplicación de la guía de entrevista permitirá obtener más y mejor información, lo que permitirá complementar y mejorar los estudios disponibles sobre este sistema-producto y disponer de un marco de referencia adecuado para reorientar el Programa Nacional de Fríjol.
3.2.3. CAMBIOS EN LAS UNIDADES DE PRODUCCIÓN DE FRIJOL: REGIÓN CENTRO DE ZACATECAS

Luis Manuel Serrano Covarrubias1, V. Horacio Santoyo Cortés2, J. Reyes Altamirano Cárdenas2

1Programa Universitario de Investigación en Cereales y Semiíndices (PUICRAS), Filantropia, UACH (frijol@xamachapengo.unam.mx). Programa Investigación en la Integración Agricultura Industria (PIIA) CIESTAAUACH Chapengo, México (vhc@xamachapengo.unam.mx, jreyes@xamachapengo.unam.mx)

Los procesos de producción de prácticamente todas las especies de interés antropocéntrico, han tenido grandes cambios a través de su historia, desde la época nómada cuando predominó la recolección hasta en la actualidad donde el plástico le roba importancia al mismo suelo incrementándose los sistemas automatizados de la agricultura protegida, situación prevaleciente en cultivos remunerativos con mercados establecidos.

El caso del cultivo de frijol, sin ser explotado de manera comercial en los sistemas de agricultura protegida, sus fincas de producción también muestran cambios importantes, sobre todo en aquellos aspectos que implican un mayor costo al productor, como el control de la maleza y la cosecha. Las fincas como tales, van realizando adecuaciones o mejoras en la producción en su conjunto, ya sea en la construcción de bodegas, adquisición de maquinaria y equipo, apertura de pozos e infraestructura de riego, etc. Cambios que señalan un progreso en dichas unidades.

Para lograr una mejor comprensión del fenómeno, se realizaron entrevistas a profundidad siguiendo la metodología de estudios de casos donde se fueron detectando las similitudes en los procesos evolutivos de cada unidad de producción.

66
De los resultados se logró conocer 1) que la metodología permite profundizar en el conocimiento de la historia oral aún presente en los productores y que bien vale un esfuerzo por el rescate de ello; 2) las unidades con mayor éxito en esa región se relacionan con la oportunidad que lograron aprovechar durante el período de apertura de pozos; 3) los productores exitosos hacen uso de la economía de escala; y 4) como elementos impulsores del desarrollo se detectaron: apoyo en política gubernamental, acción decidida de los productores al aventurarse en la adquisición de maquinaria y la tenacidad y persistencia de los productores al trabajo donde la integridad familiar juega el mayor papel.
4. MESA 4. EDUCACIÓN
4.1. RESÚMENES DE CONFERENCIAS MAGÍSTRALES

4.1.1. SITUACIÓN ACTUAL DE ALGUNAS INSTITUCIONES MEXICANAS RELACIONADAS CON LA INVESTIGACIÓN Y DOCENCIA EN FRIJOL

Dorothy María Sangermán Jarquín 1, Rigoberto Rosales Serna 1 y Luis Manuel Serrano Covarrubias 1

1 Campo Experimental Valle de México-INIFAP, km 18.5 Carr. Los Reyes-Lechería A. P. 307, CP. 56081, Tel. (999) 9522277 ext. 134, correo: dsangerm@yahoocom.mx y rigoberto_serna@yahoo.com; Programa de Frijol, Departamento de Fisiología de la Universidad Autónoma Chapingo, Km 385 Carretera México-Venustiano Carranza, Estado de México, Tel. (999) 9511644, correo: ltazarza@yahoocom.mx

Las reformas a las políticas científicas y tecnológicas implementadas durante la década de 1990 han afectado las instituciones públicas dedicadas a la docencia e investigación agropecuaria. El objetivo fue analizar el estado actual de algunas instituciones relacionadas con la investigación, educación y el desarrollo tecnológico dentro de la cadena agroalimentaria del frijol (Phaseolus vulgaris L.). Como antecedente tenemos que el frijol es parte fundamental de la cultura gastronómica de México, en donde el consumo anual promedio es de 15 kg por persona. Sin embargo, esta legumínosa enfrenta cambios en los hábitos de consumo de la sociedad como consecuencia del urbanismo, la migración, influencias externas, la inserción de más mujeres al trabajo remunerado, entre otras causas. Por otra parte, el tránsito hacia la globalización ejerce presiones en la cadena agroalimentaria del frijol. Además, se están afectando en forma diferencial a las instituciones de investigación y docencia mediante la descentralización para la definición de prioridades y la asignación de recursos. Existe tendencia generalizada a disminuir el personal en las instituciones públicas como resultado de los programas gubernamentales de "retiro voluntario", los cuales han
propiciado la reducción de la plantilla de empleados, que han pasado al desempleo, autoempleo, a la iniciativa privada o la recontratación como personal eventual. El Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), con personal egresado principalmente de instituciones educativas mexicanas, ha generado más de 120 variedades mejoradas, las cuales han dado nombre a las principales clases comerciales de frijol. En el INIFAP el promedio de edad del personal científico es de 47 años, con un mínimo de 28 años y un máximo de 72. El programa de frijol del INIFAP cuenta con 24 investigadores de tiempo completo para todo el país y en la última década no se han contratado investigadores jóvenes, por lo que la media de edad de este grupo es de 49 años. La Universidad Autónoma Chapingo (UACH), cuenta con un promedio de edad de 48, con un mínimo de 26 y un máximo de 87. En el Colegio de Postgraduados (CP) la edad promedio es de 43 años con un mínimo de 26 y un máximo de 65. Estas instituciones y otras universidades mexicanas cuentan con personal investigador trabajando principalmente de tiempo parcial en frijol.

En el 2003 se cuestionó la importancia de instituciones como el INIFAP y el CP, los cuales sustentaron su permanencia con base en los logros obtenidos. Adicionalmente se requiere de operadores políticos y de mecanismos que permitan posicionar las diferentes instituciones de investigación y docencia mediante la divulgación de sus logros sociales, económicos, científicos y tecnológicos, los cuales han tenido impacto importante en el agro mexicano. Actualmente existe fuerte competencia por recursos entre y dentro de instituciones, lo cual a propiciado la atomización de los grupos de investigadores. Con la transformación se espera fortalecer las instituciones antes mencionadas y con ello evitar el colapso de las fuentes generadoras de tecnologías, conocimiento y recursos humanos de alta calidad para fomentar el desarrollo rural mexicano.
4.1.2. LA PRODUCCIÓN DE FRÍJOL COMO OBJETIVO DE APRENDIZAJE EN LA ENSEÑANZA AGRÍCOLA SUPERIOR

Víctor Manuel Mendoza Castelló

1Departamento de Fitotecnia. Universidad Autónoma Chapingo.

El frijol en México es uno de los cultivos más importantes, puesto que es uno de los principales fuentes de alimento de calidad para toda la población, tanto del medio rural como del urbano. A pesar de esto, poco es el interés del Estado Mexicano por promover la generación de tecnología a través de la investigación y la formación de recursos humanos que mejoren la producción, incidiendo con los productores en el campo promoviendo nuevas formas más eficientes y en más lugares del país para enfrentar la demanda de frijoles en todas las regiones de México. Por el contrario parece haber un interés creciente por las estructuras del Estado para abrir las fronteras a la importación de frijol negro desde Estados Unidos, valorando el frijol mexicano y abriendo espacio para el rapaz coyoaje en las regiones productoras.

En toda la estructura de la investigación agrícola nacional, los investigadores que se dedican a trabajar con el frijol son muy pocos, difícilmente superan los 20 por lo que los resultados que se obtienen también son muy pocos. El otro espacio para investigar y formar recursos humanos capacitados son las universidades y escuelas de agronomía, sin embargo la importancia que se le da a este cultivo está permeada por el criterio que prevalezce en la sociedad, de que es un cultivo de segundo orden que no merece que se le destine ni tiempo ni recursos.

Por lo anterior, es necesario diseñar una estrategia que actualice el plan de estudios donde se haga coincidencia de que sistemas de producción como el del frijol en México se

71
les deben dar espacios y recursos, por lo que representan para la población y que al estudiante se le debe orientar en este contexto mediante la educación práctica para la producción orientandolo para enfrentar en forma práctica los problemas y a resolverlos con base en un acervo teórico que fundamentalmente esa práctica.

En síntesis al estudiante y a la población se le debe orientar para:
Crearle conciencia de la importancia del frijol en México como fuente de alimento de calidad y como una opción productiva exitosa.
Destacar la necesidad de que este cultivo requiere el diseño y operación de máquinas propias para el frijol para hacer más eficiente el trabajo humano e incrementar la productividad.
Aprender que en el país existen muchas ventanas climáticas para la producción.
Conocer la variabilidad tan grande de frijoles que existe en México, que garantiza el éxito de cualquier programa de mejoramiento genético.
Aprender las cualidades de los frijoles como fuente de proteínas de extraordinaria calidad y opción para mejorar la calidad de vida de la población.
Enseñarle al estudiante a dominar el manejo y operación de la maquinaria y equipo relacionado con el cultivo y estienda el potencial de productividad.
4.2. CAMBIOS CUALITATIVOS EN LA COSECHA DE FRÍJOL (Phaseolus vulgar L.)

Esteban Solórzano Vega

1Academia de Cultivos Básicos, Departamento de Fitotecnia, Universidad Autónoma Chapingo. Chapingo, Edo. Méx. México. km 38.5 Tel: 95 21500. ext. 6461. correo: esteban_solorzano@yahoo.com

En el presente documento se describen algunas de las experiencias que hemos obtenido durante los últimos catorce años en el viaje de prácticas correspondientes al curso de Producción de Leguminosas de Grano, en donde hemos puesto especial atención en un implemento diseñado para la realización del arranque y engavillado o paveado (formar hileras con un rastrillo mecánico) de las plantas del frijol al momento de su cosecha. Dicho implemento consiste de una barra transversal y la rasera, que tiene un uso común en la región de "La Honda" y comunidades vecinas, como: Tierra Generosa, Río Grande, González Ortega y Miguel Auza, Zac. Desafortunadamente, los tipos del suelo y las condiciones atmosféricas entre esa región y Chapingo, tales como, una mayor precipitación, en esta última, que propicia una mayor densidad y diversidad de malezas, lo cual dificulta la labor de arranque y puede, si esta operación no se realiza en las primeras horas de la mañana y si el estado fenológico de madurez del grano del frijol está muy avanzado dar con efectos fuertes perdidas de grano.

Se describen los cambios que ha tenido este implemento, así como las ventajas y desventajas del mismo. Lo que es muy evidente, es que se requiere de la realización de las dos labores de cultivo y un excelente control de las malas hierbas, si se desea utilizarlo en el área de influencia de Chapingo. Pudieron observarse también otros problemas
El frijol (*Phaseolus vulgaris* L.) es una de las leguminosas principales que son consumidas a nivel mundial. En México forma parte esencial en la dieta diaria de sus habitantes ya que es la fuente principal de proteína, y complemento esencial de los cereales como trigo y maíz en las diferentes regiones del país. En este contexto, no obstante la importancia que ha mantenido durante el tiempo esta leguminosa en superficie cultivada y producción, se ve cada día más amenazado por la falta de competitividad en la que se involucran varios aspectos entre los que destaca la tecnología de producción,
un tanto inefficiente. De ahí surgen diversas preguntas, sobre la incidencia de las diversas instituciones que en México se dedican a la enseñanza y investigación de esta leguminosa tales como INIFAP, CP, UACH, principalmente, que año a año, generan nuevos conocimientos sobre el manejo agronómico en esta especie.

Aunque para este caso existen una serie de factores que hacen que las diversas prácticas agronómicas que se utilizan en esta especie en las regiones altamente productora de frijol en México, sean totalmente diferentes a las que se realizan en las instituciones de enseñanza y/o investigación, y observamos que existen diferencias, desde el manejo de el suelo antes de la siembra, en las que características de origen, textura y estructura del suelo, no son las que determinan el manejo del mismo, sino que existen factores de índole social, económico y mental que determinan el manejo del mismo.

Vemos que por mencionar un caso se tiene que durante el manejo del cultivo si comparamos la tecnología de producción de agricultores en Zacatecas y Durango, comparado con la UACH, tenemos que la distancia entre surcos, en la UACH se realiza de manera general a 80 cm., bajo el argumento de que la maquinaria con cuenta la institución esta hecha para este distanciamiento de surcos, lo cual hace que el control de malezas, sea mucho más difícil y con costos elevados que muchas veces no se contabilizan pero que existen y que vuelven inefficiente el sistema, y observamos que aún aplicando herbicidas, utilizando implementos agrícolas, y la fuerza de trabajo de estudiantes, el control de las malezas, sea mínimo ya que al momento de alcanzar la máxima área foliar el cultivo, este no llega a tener una cobertura total del suelo, lo cual permite que hayan condiciones propicias para la aparición de hierbas a lo largo del ciclo agrícola. Mientras que para el caso de las zonas productoras el distanciamiento entre surcos es mucho menor y el control de las malezas y en si todo el proceso de producción se realiza de manera mecanizada.

75
Puesto que maquinaria y sus implementos agrícolas se adecuan a las necesidades de el cultivo, ya que se trata de hacer eficiente el uso de los recursos con que dispone cada uno de los productores. Principalmente los recursos económicos y humanos que en estas zonas son escasos por la alta migración de sus pobladores a los Estados Unidos de Norteamérica. Si se ve a detalle, existen muchas diferencias en todo el proceso, desde fertilización, hasta la cosecha. Y observamos que independientemente de las condiciones específicas de producción para cada uno de los casos mencionados, influyen en sobresaliente el objetivo y destino de los recursos obtenidos de la producción.

5. CONFERENCISTA INVITADO

APOYOS A LA PRODUCCIÓN DE FRIJOL EN MÉXICO

Antonio Mejía Haro. Diputado Federal, LXI legislatura.

En México, el cultivo del frijol junto con el maíz, representa toda una tradición productiva y de consumo, cumpliendo diversas funciones de carácter alimentario y socioeconómico que le han permitido ser de gran trascendencia en la actualidad. Su presencia a lo largo de la historia de México, lo han convertido no solo en un alimento tradicional sino también en un aspecto de identificación cultural, comparables con otros productos como el maíz y el chile, los que son básicos para explicar la dieta alimentaria de ayer, hoy y muy probablemente del futuro.

El frijol es uno de los cultivos de mayor importancia en el país ya que representa para la economía de los productores una fuente importante de ocupación e ingreso, a la vez que es una garantía de seguridad alimentaria. Asimismo, su consumo es generalizado entre amplias capas de la población.
de ingresos bajos, medios y hasta superiores. Por esto, la importancia de este grano en la dieta actual del país sigue siendo fundamental. Este cultivo contribuye a mantener la paz social en el campo y genera una derrama económica directa alrededor de 7 mil millones de pesos por la venta de aproximadamente 1.3 millones de toneladas que se producen por año.

En lo que se refiere a Comercio Exterior, México ocupa el quinto lugar a nivel mundial en producción de frijol. En el periodo de 1992 al 2002, el 57% de la producción mundial de frijol se concentró en cinco naciones: La India (18%), Brasil (16.5%) China (8.4%), Estados Unidos (7.3%) y México (6.8%). En nuestro país, la producción anual es de aproximadamente 1.3 millones de toneladas producidas en 2 millones de hectáreas; producción muy similar a la de los Estados Unidos, pero su producción la tienen en tan sólo 700 mil hectáreas (que equivale a la superficie sembrada en el Estado de Zacatecas), es decir utilizan sólo el 35% de la superficie que destina México a este cultivo para obtener similar producción. Esto se debe a los bajos rendimientos unitarios de México de aproximadamente 629 kg/ha contra los obtenidos por los Estados Unidos de 1700 kg/ha.

Cabe mencionar que países con los cuales tenemos tratados comerciales como Canadá, Estados Unidos y China han tenido rendimientos de frijol en los últimos diez años por arriba de 1 ton/ha, esto se explica por la mejora en la tecnología y el tipo de variedades sembradas. México en las décadas de los sesenta y setenta exportaba frijol, a partir de los ochenta se convirtió en un país importador de frijol comprando alrededor de 300 mil toneladas anualmente, principalmente de los Estados Unidos. No somos un país autosuficiente en frijol.

Entonces por que hay excedentes de frijol año con año, si los cupos de importación que se establecieron en el calendario de exportaciones de frijol a México por parte de Estados Unidos en el marco del TLCAN sin pago de arancel iniciaron con 50
mil toneladas de frijol en 1994, los cuales se incrementan año con año en un 3% hasta el 2008, que es cuando el frijol estaría libre de aranceles. La respuesta se encamina a que entra a México más frijol de lo que está legalmente permitido, y lo que es peor sin pagar los aranceles convenidos, en otras palabras estamos hablando de contrabando técnico que entra mediante amparos otorgados a los importadores por jueces de distrito.

Aproximadamente el 85% de la superficie que se siembra en el país se realiza bajo condiciones de temporal, por lo que esta actividad depende en buena medida de la cantidad y distribución de las lluvias que se registran en cada ciclo, así como por la fecha de inicio de las heladas, por lo que esta actividad es demasiado incierta.

Entre los productores de frijol, la preocupación permanece, no desaparece, si no llueve lo suficiente no hay cosechas, pero si llueve bien, hay cosechas, pero éstas no se venden, o se venden a precios muy bajos, que no les permite recuperar sus costos de producción, esto por el excesivo intermediarismo "toyotaje" en la comercialización. Aunado a esto, la falta de organización para poder negociar su producto en mejores condiciones, es otro factor que incide para que el productor no reciba una mayor retribución por su producto.

El sistema-producto frijol ha sido uno de los más discriminados por parte de los programas gubernamentales, no recibe como otros granos y oleaginosas apoyos a la comercialización, a excepción del año 2001 donde se orientaron a nivel nacional 560 millones de pesos para la constitución de fondos estatales que fueron insuficientes para lograr un acopio de frijol por parte de las integradoras estatales que permitiera incidir en los precios de este grano.

Además las reglas de operación de estos fondos tuvieron muchos candidos y fueron muy burocratizadas, por lo que no permitió el acceso oportuno a los recursos. Cabe destacar que para el 2004 se aprobaron 900 millones de pesos a la productividad y comercialización de frijol. Pero estos apoyos
no se han institucionalizado como los que reciben otros granos y oleaginosas, más que todo han obedecido a iniciativa de los diputados. Se sigue sembrando frijol por costumbre y no por negocio, por que el productor no realiza cuentas y por que en muchos casos se subsidia a esta actividad con las remesas de los familiares que trabajan en los Estados Unidos. La cosecha del ciclo P-V de este año está por iniciarse en Zacatecas y Durango que producen el 50% de la producción nacional, por el régimen de lluvias que hasta el momento se ha dado se espera que las cosechas sean de regulares a buenas, omite mencionar cantidades para no abonar a la especulación y mancar señales negativas al mercado. Nos preocupa que haya aún excedentes de frijol en los Estados de ciclos anteriores y que el frijol acopiado por ASERCA en Zacatecas y Durango, buena parte no se haya comercializado.

Es lo que se refiere a presupuesto el día de ayer presente un punto de acuerdo para que dentro del Presupuesto de Egresos de la Federación del ejercicio fiscal 2005, se destinen y etiqueten dos mil millones de pesos para la comercialización del frijol, así como para el fondo de apoyo a la cadena agroalimentaria frijol, para fortalecer las siguientes acciones:

1.- Procesos de beneficio del frijol (limpiado, clasificación por tamaño, pulido, abrillantado y embolsado). Hoy en día el consumidor para la compra considera estos atributos físicos.

2.- Industria de la transformación del frijol (deshidratado, harina, peletizado, estrusado, embolsado es fresco, pastas instantáneas, enlatado, entre otros).

3.- Paquetes tecnológicos que mejoren rendimientos unitarios y bajen costos de producción.
4.- Apoyos a la comercialización de frijol a través de organizaciones económicas de productores.

5.- Conversión de cultivos en zonas de bajo potencial.

6.- Apoyos a la investigación y transferencia de tecnologías para el desarrollo de variedades preferentes al consumidor y a la industria, maquinaria para el cultivo, cosecha y poscosecha.

Es necesario que a través de programas gubernamentales se mejoren y amplíen la infraestructura de acopio, almacenamiento, transporte, distribución, procesamiento y de valor agregado del frijol.

Asimismo es importante Vigilar los Puertos y Fronteras como fue el compromiso en el Acuerdo Nacional para el Campo para combatir el contrabando técnico, que ha perjudicado de manera significativa a esta rama productiva.

Respeto irrestricto de las cuotas de importación estableciendo aranceles compensatorios a los excedentes del “arancel cuota”.

Excluir del Tratado de Libre Comercio al frijol por razones de seguridad y soberanía alimentarias, ya que no podemos competir con nuestros socios comerciales por tener estos ventajas comparativas, competitivas, agroclimatológicas, tecnológicas y de subsidios.

En lo que se refiere a políticas agrícolas es necesario tener políticas de revalorización del campo mexicano, a partir de las que se acepte que el sector agropecuario puede
desempeñar importantes funciones en el futuro de la economía.

✓ Políticas de estrategia económica con visión de estado.

✓ Políticas de respuesta a los nuevos retos del sector agrícola en general y comercialmente en cuanto a la producción.

Por su atención touchas gracias.

Dip. Fed. Antonio Mejia Haro
Secretario de la Comisión de Agricultura y Ganadería
Esta obra se terminó de imprimir en el mes de octubre del año 2004.
Tiraje: 200 ejemplares
Diseño: Moises Aguilar Castillo
Fotografías: Rigoberto Rosales Sena y Armando López Huerta