Impacto Económico del
Mejoramiento Genético del Trigo en
México: Variedad Salamanca S75
H. JUNTA DE GOBIERNO DEL INIFAP

PRESIDENTE
Lic. Francisco Mayorga Castañeda
Secretario de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación

REPRESENTANTES PROPIETARIOS
Ing. Francisco López Tostado
Subsecretario de Agricultura de la SAGARPA

Ing. Antonio Ruiz García
Subsecretario de Desarrollo Rural de la SAGARPA

Ing. Norberto de Jesús Roque Díaz de León
Subsecretario de Fomento a los Agronegocios de la SAGARPA

Lic. Xavier Ponce de León Andrade
Oficial Mayor de la SAGARPA

Lic. Pablo S. Reyes Pruneda
Director General de Programación y Presupuesto de la SHCP

Quim. Felipe Adrián Vázquez Gálvez
Subsecretario de Gestión para la Protección Ambiental SEMARNAT

Dr. Gustavo Chapela Castañares
Director General del CONACYT

Ing. Manuel Agustín Reed Segovia
Director General de la Comisión Nacional Forestal

C. Carlos Baranzini Coronado
Presidente de la Coordinadora de Fundaciones Produce A.C.

Ing. Fernando Montes Cavazos
Presidente de la Asociación Mexicana de Secretarios de Desarrollo Agropecuario A.C.

Lic. Francisco Márquez Aguilar
Secretario Técnico del Consejo Mexicano para el Desarrollo Rural Instentable

Dr. Jorge Acosta Gallegos
Investigador INIFAP nivel III del SNI

Dr. José Reyes Sánchez
Director de la Fundación Mexicana para la Investigación Agropecuaria y Forestal A.C.

ÓRGANO DE VIGILANCIA
Lic. Mario Mitrí Salazar
Comisario Propietario de la SFP ante el INIFAP

Dr. Pedro Brajich Gallegos
Director General del INIFAP

Dr. Sebastián Acosta Núñez
SecretarioTécnico de la H. Junta de Gobierno

Lic. Marcial García Morteo
Prosecretario de la H. Junta de Gobierno
Impacto Económico del Mejoramiento Genético del Trigo en México: Variedad Salamanca S75

Adrián González Estrada¹, Ernesto Solís Moya² y Stanley Wood³.

¹ Líder Nacional del Programa de Economía, INIFAP.
² Programa de Trigo, INIFAP.
³ Research Scientist, International Food Policy Research Institute, Washington, D. C.
Contenido

1 Introducción
 Introducción .. 5

2 La Producción de Trigo en el Bajío
 2.1 Problemas agronómicos y fitosanitarios de la producción de trigo en la región del Bajío .. 9

3 Metodología
 Metodología .. 13

4 El Mejoramiento Genético del Trigo en el INIFAP
 4.1 Método de evaluación del material experimental ... 17
 4.2 Descripción de la variedad de trigo Salamanca S75 .. 17

5 Gastos en Investigación y Difusión
 5.1 Gastos de investigación ... 21
 5.2 Gastos de difusión y extensión .. 22

6 Análisis de Resultados
 6.1 Impacto medio de la variedad Salamanca S75 .. 27
 6.2 Costos de producción con las distintas variedades .. 28
 6.3 Beneficios adicionales ... 29
 6.4 Impacto potencial ... 29
 6.5 Proceso signo*Hall de adopción ... 29
 6.6 Proceso esencialístico de adopción ... 30
 6.7 Estructuras de mercado .. 31
 6.8 Beneficios económicos ... 31
 6.9 Valor actual neto (VAN) .. 32
 6.10 Indicadores evaluativos .. 33
7 Conclusiones

8 Referencias Bibliográficas

9 Anexo: Método de Evaluación del Impacto Económico de las Tecnologías Generadas por el INIFAP

9.1 Caracterización del logro tecnológico
9.2 Excedentes económicos derivados de la investigación
9.3 Parametrización del excedente económico total, ΔTS
9.4 Excedentes económicos inducidos por la investigación en economías pequeñas, abiertas y con distorsiones
9.5 Modelo dinámico de difusión de técnicas de producción
9.6 Niveles de confianza para los beneficios estimados de la investigación
9.7 Calibración del modelo
9.8 Parametrización de la estructura del mercado
9.9 Parametrización del crecimiento de la oferta y de la demanda
9.10 El equilibrio del mercado
9.11 Parametrización del desplazamiento de la oferta inducido por la investigación
9.12 Comercio internacional "libre"
9.13 Comercio internacional con impuestos y subsidios
9.14 El caso de un país pequeño
9.15 Calibración de los impactos sobre el bienestar
9.16 Agregación intertemporal de los excedentes económicos
9.17 Agregación intertemporal de los costos de investigación y transferencia
9.18 Indicadores evaluativos
9.19 Referencias bibliográficas
E n un país como México, en el que la escasez notoria de recursos fiscales contrasta con la existencia de innumerables problemas económicos, de tan graves rezagos sociales y de problemas de pobreza, el manejo eficiente del gasto público es una exigencia imperdonable, a la que deben responder todas las instituciones con sentido de eficiencia y equidad.

Con motivo de su transformación en Centro Público de Investigación, el INIFAP estableció el compromiso institucional de emprender un proceso permanente de seguimiento y evaluación de la adopción e impacto de sus tecnologías y productos. Una de las metas de ese compromiso es la de entregar anualmente los estudios del impacto económico de las tecnologías generadas por el INIFAP.

La presente evaluación del impacto económico de la variedad de trigo Salamanca S75, formada y liberada por el INIFAP, es otro de los frutos del proyecto de investigación que surgió precisamente de ese compromiso institucional y que tuvo como objetivo evaluar con rigor las aportaciones tecnológicas del instituto.

La hipótesis central de ese proyecto de investigación es que los recursos destinados a la investigación son una inversión, más que un gasto, y que tal inversión es altamente redituables tanto desde el punto de vista privado, como de la economía en su conjunto.

No se trata, desde luego, de exigir los logros, ni mucho menos de minimizar los problemas de la investigación agropecuaria y forestal de México. Por el contrario, se partió de su reconocimiento explícito y de la necesidad de reformarla profundamente, con el fin de ponerla a tono con los nuevos retos y con las nuevas realidades de la agricultura y de la economía mexicana en su conjunto.

El presente trabajo está organizado en nueve partes. La primera, es la introducción. En la segunda, se describe la producción de trigo en el Bajío. En la tercera, se describe brevemente el método usado para la evaluación. En la cuarta parte, se describe el programa de mejoramiento genético del trigo en el INIFAP. Luego, se presentan los gastos en investigación y difusión. En las partes sexta y séptima, se presentan el análisis de resultados y las conclusiones que se obtuvieron de la evaluación de los impactos económicos inducidos por las variedades de trigo Salamanca S75. En la última parte, se encuentra un anexo con los detalles del método usado en para tal evaluación.
Serie: Estudios de Evaluación del Impacto Económico de Productos del INIFAP
Impacto Económico del Mejoramiento Genético del Trigo en México: Variedad Salamanca S75

La Producción de Trigo en el Bajío
Impacto Económico del
Mejoramiento Genético del
Trigo en México: Variedad
Salamanca S75
LA PRODUCCIÓN DE TRIGO EN EL BAJÍO

El rendimiento medio del trigo en México se ha incrementado considerablemente desde 1940, cuando se obtenían 740 kg/ha, hasta el año 2002, en el que se obtuvo un rendimiento medio de 4,600 kg/ha. Este incremento tan significativo se debió a varios factores, entre los que destaca el desarrollo de variedades mejoradas de trigo.

En México, el Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP) y uno de sus antecedentes, el Instituto Nacional de Investigaciones Agrícolas (INIA), en estrecha colaboración con el Centro Internacional de Mejoramiento del Maíz y el Trigo (CIMMYT), liberaron 202 variedades mejoradas de trigo durante el periodo 1942-2002 (INIFAP, 1987 y Espinosa et al., 2002). Tan solo durante el periodo 1965-2002, el INIFAP liberó 50 variedades mejoradas de esta especie (Espinosa et al., 2002).

La formación de variedades semieranas liberadas por primera vez en 1962, marcó un hito en las actividades de mejoramiento genético del trigo y en el proceso de crecimiento de los rendimientos de este cultivo en México. Un ejemplo, es el estado de Guanajuato, principal productor del Bajío, donde el rendimiento promedio por hectárea aumentó de 2.0 ton/ha en 1964 a más de 5.5 ton/ha en la actualidad. Estos rendimientos colocan al estado entre los más sobresalientes en este rubro (SAGARPA, 2001).

2.1. Problemas agronómicos y fitosanitarios de la producción de trigo en la región del Bajío.

El Campo Experimental Bajío (CEBAJ) del INIFAP, a través de su Programa de Mejoramiento Genético de Trigo, ha trabajado en forma continua desde 1961 a la fecha en la creación de variedades mejoradas de trigo, a través de la hibridación de variedades y líneas élitas, la selección del material segregante y la evaluación de líneas sobresalientes. Ha sido norma para cada genotipo que se libere, que supera al menos en una característica a la variedad que sustituye.
La producción de trigo en el Bajío padece de los siguientes problemas:

- La escasez de agua, que presenta la región del Bajío desde hace varios años y que se ve reflejada en reducciones del área sembrada de trigo, hace necesario continuar los trabajos de investigación para la generación de genotipos eficientes en el uso del agua.

- La constante aparición de nuevas razas de royas obliga al mejoramiento continuo en la búsqueda de genotipos con un mayor espectro de resistencia tanto en trigos híbridos como crípticos.

- En el Bajío se siembra sólo una variedad de gluten fuerte, por lo que existe un riesgo alto de que se presente una epidemia de roya lineal.

Por ello, resulta urgente la obtención de genotipos de gluten fuerte, con mayor espectro de resistencia a la roya lineal, precios, de similar calidad a la variedad existente y si es posible, con mayor rendimiento de grano.
Impacto Económico del Mejoramiento Genético del Trigo en México: Variedad Salamanca S75

Metodología
Impacto Económico del Mejoramiento Genético del Trigo en México: Variedad Salamanca S75
METODOLOGÍA

El método usado para la cuantificación del impacto económico de la variedad de trigo Salamanca S75 liberada por el INIFAP, se presenta in extenso en el anexo. Aquí se presenta un resumen sucinto de sus componentes fundamentales:

- Caracterización de la innovación tecnológica.
- Cuantificación en el tiempo de los costos y los beneficios potenciales atribuibles a la incorporación de ese logro tecnológico en el proceso productivo.
- Cuantificación del efecto precio de esa innovación y su efecto económico o agregado potencial.
- Cuantificación de las trayectorias temporales de los niveles de adopción en condiciones de incertidumbre y riesgo.
- Procesamiento computacional de la información y cálculo de los indicadores, mediante el paquete DREAM 3.2 desarrollado por Wood y Baitz (1999).

El impacto económico de la variedad de trigo Salamanca S75, se cuantificó con los indicadores evaluativos generalmente aceptados: Valor Actual Neto (VAN), la Relación Beneficio–Costo (B/C) y la Tasa Interna de Rentabilidad (TIR).
Serie: Estudios de Evaluación
del Impacto Económico de Productos
del INIFAP
Impacto Económico del Mejoramiento Genético del Trigo en México: Variedad Salamanca S75

El Mejoramiento Genético del Trigo en el INIFAP
Impacto Económico del
Mejoramiento Genético del
Trigo en México: Variedad
Salamanca S75
EL MEJORAMIENTO GENÉTICO DEL TRIGO EN EL INIFAP

4.1. Método de evaluación del material experimental.
La escasez de agua para riego en la región, impulso al INIFAP a emprender trabajos de investigación tendentes a obtener genotipos eficientes en el uso del agua y con resistencia a las enfermedades mencionadas.

El método de evaluación del material experimental es el siguiente: en el ciclo otoño-invierno la generación F₀ se maneja con riego completo, con 4 ó 5 riegos e inoculación artificial de roya lineal. Esta última componente, se debe a que la condición de humedad favorece la incidencia de roya y por lo tanto, hace factible la eliminación de las plantas susceptibles. La generación F₁ se maneja con 3 riegos totales para avanzar sólo las familias eficientes en el uso del agua. La generación F₂ se conduce de forma similar a la F₀ y la F₁ a la F₂.

Los ensayos de rendimiento se manejan con un calendario de 3, 4 ó 5 riegos, de tal forma que sea posible detectar las líneas susceptibles a roya. Los genotipos seleccionados en los experimentos 01, se evalúan en el experimento de calendarios de riegos (ensayos con 2, 3 y 4 riegos). Durante el ciclo primavera-verano el germoplasma se evalúa en Texcoco, Mex., bajo condiciones de temporal. En esta localidad se evaluaron tanto las líneas avanzadas en viviers de observación de enfermedades, como las generaciones segregantes (F₀ a F₂). Ahí, los materiales están expuestos a una fuerte presión de la roya lineal de la hoja, de la roya del tallo y de las enfermedades foliares (Helminthosporium y Septoria), las cuales son comunes en los Valles Altos de México. Esta práctica incrementa la posibilidad de seleccionar acertadamente a aquellos genotipos resistentes a las royas y a las enfermedades foliares. Los genotipos más sobresalientes son luego evaluados en condiciones de temporal con el fin de seleccionar los que son a la vez más resistentes a la sequía.

La aparición constante de nuevas razas de roya, hace imprescindible la continuación del programa de cruzamientos orientado a la generación de nuevas lineas experimentales con un mayor espectro de resistencia genética a las royas. También resulta necesario promover la formación de variétades de trigo harinero de los grupos I, II y III con mayor calidad, así como incrementar su potencial productivo.

4.2. Descripción de la variedad de trigo Salamanca ST5.
El INIFAP, ha sugerido para siembra en el Bajo a más de 40 variedades harineras, entre las que destaca Salamanca ST5, la cual fue liberada en 1975. Debido a sus características superiores, Salamanca ST5 produjo un gran impacto económico: sus altos rendimientos y su resistencia a las razas de roya lineal amarilla (Puccinia striiformis f. sp. Tritici) existentes en el área, le han permitido mantenerse en la preferencia de los productores a través de los años.

De acuerdo con la Ley de Protección de Variedades Vegetales vigente en México, esta variedad fue inclusa el 9 de noviembre de 1979 en el Registro Nacional de Variedades y
Plantas con la clave: TR-056-091179. La semilla de esta variedad para su reproducción se encuentra disponible en el CEBAJ-INIFAP.

Por sus altos rendimientos, en comparación con las variedades previamente liberadas, Salamanca S75 ha sido una de las variedades mejoradas de trigo más importantes en el estado de Guanajuato, el cual es el principal productor de trigo del Bajío. A partir de 1972 se empezó a evaluar en ensayos de rendimiento en el CEBAJ; en los años 1973-74 y 1974-75 en diferentes localidades de la región del Bajío. Las características morfométricas fueron medidas en el CEBAJ bajo condiciones de riego en el ciclo CH-1973-74 y 1974-1975.

Salamanca S75 es una variedad semienana que alcanza los 95 cm. de altura, su hábito de crecimiento es de primavera. Es una variedad de madurez intermedia a precoz, con 132 días a la madurez.

Las espigas son medio densas con barbas y de color café, antes de madurar son erectas, al final se inclinan un poco, debido a su peso que es superior al de las variedades comerciales sembradas hasta 1976.

La paja es moderadamente débil y es moderadamente susceptible al acarre, ya que puede llegar a caerse cuando se usan sobredosis de fertilización nitrogenada o densidades de siembra muy altas. Es resistente al desgran. La espiga es cuadrada, con 3 granos por espiga en la basal y apical, 4 en las restantes. Tiene un promedio de 20 espigulletas por espiga y tiene 10.5 cm. de largo, sin incluir las barbas las cuales miden de 5 a 8 cm. Las glumas son grises de tamaño mediano a grande, de hombro cuadrado de 1 a 2 mm de ancho, con pico acuminado de 4 a 7 mm de largo.

El grano es grande, de color rojo, de textura suave, ranura de anchura y profundidad medianas, con bordes redondeados, germen mediano, con brocha de anchura y longitud medianas.

Es resistente a la roya del tallo y susceptible a roya de la hoja y moderadamente susceptible a roya bejaría amarilla. La calidad panadera y molinera es buena, su rendimiento de harina es del 70% y su gluten es suave, con características recomendables para usarse en mezclas.

Su rendimiento es muy superior al expresado por las variedades liberadas antes de 1975, promediando un 30% más que Toluca F73 y Yecora F70.
Impacto Económico del Mejoramiento Genético del Trigo en México: Variedad Salamanca S75

Gastos en Investigación y Difusión
Impacto Económico del
Mejoramiento Genético del
Trigo en México: Variedad
Salamanca S75
5.1. Gastos de investigación.
Los gastos corrientes anuales de investigación erogados durante el proceso de formación de las variedades mencionadas, se resumen en el siguiente cuadro:

Cuadro 1. Gastos corrientes de investigación por año para obtener la variedad Saltamansa S75 (pesos del año 2003)

<table>
<thead>
<tr>
<th>CONCEPTOS</th>
<th>COSTO ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A) SUELDOS Y SALARIOS: ((a+b+c))</td>
<td>1,763,360.08</td>
</tr>
<tr>
<td>a) 3.3 investigadores (2 investigadores categoría "C" dedicando un 50% de su tiempo, (\frac{2}{3} \times 0.5 \times 305,818.00) y 7 investigadores categoría "C" dedicando un 33% de su tiempo, (\frac{7}{3} \times 0.33 \times 305,818.00))</td>
<td>1,164,518.00</td>
</tr>
<tr>
<td>b) 3.3 ayudantes de investigación (10 ayudantes dedicando un 33% de su tiempo, (\frac{10}{3} \times 0.33 \times 22,831.00))</td>
<td>306342.00</td>
</tr>
<tr>
<td>c) 5 supervisores de campo (20 trabajadores dedicando un 60% durante 6 meses, (20 \times 0.6 \times 9 \times 3,200.00))</td>
<td>292,500.00</td>
</tr>
<tr>
<td>B) COSTO DE ESTABLECIMIENTO Y OPERACIÓN: incluye manejo agronómico, labores de campo, actividades de laboratorio y procesamiento de información. Excluye laborios que requieren mano de obra, la cual fue considerada en el concepto anterior de sueldos y salarios.</td>
<td>100,000.00</td>
</tr>
<tr>
<td>C) GASTOS DE OPERACIÓN DEL PROYECTO</td>
<td>342,227.00</td>
</tr>
<tr>
<td>a) 1.8 secretarias (1.8 secretarias dedicadas un 20% de su tiempo, (\frac{1.8}{2} \times 0.2 \times 370,106.00))</td>
<td>126,189.00</td>
</tr>
<tr>
<td>b) Apoyo administrativo (0.2 x (a + c + d + e + f))</td>
<td>57,038.00</td>
</tr>
<tr>
<td>c) Materiales y suministros</td>
<td>15,900.00</td>
</tr>
<tr>
<td>d) Combustibles y lubricantes (1/2 x $12,000.00 x 9 vehículos)</td>
<td>54,000.00</td>
</tr>
<tr>
<td>e) Operación y amortización de vehículos (costo anual de amortización por vehículo: $15,000.00 x 1/2 a x 15,000.00)</td>
<td>67,500.00</td>
</tr>
<tr>
<td>f) Mantenimiento de equipos ($5,000.00 x año/vehículo) (1/2 x 9 x $5,000.00)</td>
<td>22,500.00</td>
</tr>
<tr>
<td>COSTO TOTAL: (A + B + C)</td>
<td>2,265,587.00</td>
</tr>
</tbody>
</table>

Los trabajos de investigación para la formación, evaluación y liberación de la variedad Saltamansa S75 se iniciaron en 1967 y culminaron en el año 1974, con la evaluación de la línea avanzada a nivel nacional, con 80 pruebas diferentes.
5.2. Gastos de difusión y extensión.

La liberación y lanzamiento de la variedad Salamanca S75 fue en el año 1975.

El proceso de difusión y promoción de la variedad de trigo Salamanca S75, generada por el INIFAP para la región del Bajo, se inició en 1975 y la superficie objetivo fue 180,000 hectáreas anuales en promedio.

De acuerdo con SAGARPA (2000 y 2001), un extensionista atiende en promedio entre 700 y 800 hectáreas y su sueldo medio anual es de sesenta mil pesos. Bajo el supuesto de que el área atendida es de 750 ha, entonces el costo medio por concepto de difusión y extensionismo es de $ 80.00/ha, de los cuales la décima parte corresponde exclusivamente a los gastos para promover el uso de una nueva variedad. La difusión de Salamanca S75 se hizo a través de folletos, trípticos y parcelas de validación y demostración, atendidas por extensionistas.

La superficie de la región en la que se promovió el uso de la variedad Salamanca S75 fue 180,000 hectáreas, en promedio, durante los años 1975-1990, lo que representa un costo total por concepto de difusión y extensión de 1.4 millones de pesos por año.
<table>
<thead>
<tr>
<th>Año</th>
<th>Gastos de investigación</th>
<th>Gestos en difusión y extensión</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Corrientes</td>
<td>Actualizados 2002 = 100 (i = 8.5%)</td>
</tr>
<tr>
<td>1967</td>
<td>2,015,587</td>
<td>62,848,798.8</td>
</tr>
<tr>
<td>1968</td>
<td>2,015,587</td>
<td>48,261,881.1</td>
</tr>
<tr>
<td>1969</td>
<td>2,015,587</td>
<td>44,074,777.3</td>
</tr>
<tr>
<td>1970</td>
<td>2,015,587</td>
<td>40,290,838.8</td>
</tr>
<tr>
<td>1971</td>
<td>2,015,587</td>
<td>36,758,847.6</td>
</tr>
<tr>
<td>1972</td>
<td>2,015,587</td>
<td>33,569,723.8</td>
</tr>
<tr>
<td>1973</td>
<td>2,015,587</td>
<td>30,657,292.0</td>
</tr>
<tr>
<td>1974</td>
<td>2,015,587</td>
<td>27,867,517.9</td>
</tr>
<tr>
<td>1975</td>
<td>1,400,000</td>
<td>18,229,065.7</td>
</tr>
<tr>
<td>1976</td>
<td>1,400,000</td>
<td>14,821,821.6</td>
</tr>
<tr>
<td>1977</td>
<td>1,400,000</td>
<td>13,525,758.2</td>
</tr>
<tr>
<td>1978</td>
<td>1,400,000</td>
<td>12,361,378.3</td>
</tr>
<tr>
<td>1979</td>
<td>1,400,000</td>
<td>11,268,829.9</td>
</tr>
<tr>
<td>1980</td>
<td>1,400,000</td>
<td>10,209,528.0</td>
</tr>
<tr>
<td>1981</td>
<td>1,400,000</td>
<td>9,141,091.4</td>
</tr>
<tr>
<td>1982</td>
<td>1,400,000</td>
<td>8,108,256.9</td>
</tr>
<tr>
<td>1983</td>
<td>1,400,000</td>
<td>7,162,269.4</td>
</tr>
<tr>
<td>1984</td>
<td>1,400,000</td>
<td>6,267,040.6</td>
</tr>
<tr>
<td>1985</td>
<td>1,400,000</td>
<td>5,458,496.5</td>
</tr>
<tr>
<td>1986</td>
<td>1,400,000</td>
<td>4,651,785.6</td>
</tr>
<tr>
<td>1987</td>
<td>1,400,000</td>
<td>3,897,091.5</td>
</tr>
<tr>
<td>1988</td>
<td>1,400,000</td>
<td>3,145,243.4</td>
</tr>
<tr>
<td>1989</td>
<td>1,400,000</td>
<td>2,405,030.8</td>
</tr>
<tr>
<td>1990</td>
<td>1,400,000</td>
<td>1,791,722.9</td>
</tr>
<tr>
<td>TOTAL</td>
<td>314,417,727.6</td>
<td>443,778,723.0</td>
</tr>
</tbody>
</table>

La tasa real de descuento utilizada es del 9.5%, correspondiente a la tasa media real que reciben los flujos de capital extranjero, tanto en la forma de inversión de portafolio como en la forma de inversión extranjera directa (González-Estrada, 1999).

La suma actualizada al año 2002, con la tasa de descuento de 9.5%, del flujo de gastos en investigación fue 314.4 millones de pesos y del flujo de gastos en difusión y extensión, 143.3 millones de pesos, lo que suma un total de 457.7 millones de pesos.
Serie: Estudios de Evaluación del Impacto Económico de Productos del INIFAP
Impacto Económico del Mejoramiento Genético del Trigo en México: Variedad Salamanca S75

Análisis de Resultados
Impacto Económico del
Mejoramiento Genético del
Trigo en México: Variedad
Salamanca S75
ÁNALISIS DE RESULTADOS

6.1. Impacto medio de la variedad Salamanca 7S5.
De acuerdo con Solís (2004), la variedad Salamanca 7S5 es más eficiente en el uso del agua y en el uso del fertilizante nitrogenado que las variedades que la antecedieron; Yécora F70 y Toluca F73, ya que con la misma cantidad de esco factorios (cuatro riegos y 240 unidades de nitrógeno por ha) produce un rendimiento más alto que el obtenido con dichas variedades.

Con el fin de cuantificar los beneficios económicos inducidos por la variedad de trigo Salamanca 7S5 generada por el INIFAP, es necesario describir sus diferencias productivas con respecto a las variedades previamente usadas en la región: Yécora F70, Toluca F73 y Cajeme F70 las cuales deben ser consideradas como testigos, tal y como se hace en el siguiente cuadro:

<table>
<thead>
<tr>
<th>Atributos y características</th>
<th>Variedad Yécora F70</th>
<th>Variedad Salamanca 7S5</th>
<th>Diferencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rendimiento medio regional obtenido por las producciones (kg/ha)</td>
<td>3,700*</td>
<td>5,500*</td>
<td>1,800</td>
</tr>
<tr>
<td>Precio medio rural que reciben los productores $/ton.</td>
<td>1,900</td>
<td>1,500</td>
<td>400</td>
</tr>
<tr>
<td>Ingresos brutos $/ha.</td>
<td>5,920</td>
<td>8,800</td>
<td>2,880</td>
</tr>
<tr>
<td>Costo medio de producción</td>
<td>8,793</td>
<td>8,673</td>
<td>120</td>
</tr>
<tr>
<td>Ingresos netos ($/ha)**</td>
<td>-2,873</td>
<td>727</td>
<td>3,600</td>
</tr>
</tbody>
</table>

Notas:
* Rendimiento medio regional reportado por SAGARPA para el año 1997, cuando se sembraban las variedades Yécora F70, Toluca F73 y Cajeme F70.
** Ingresos netos obtenidos con la tecnología tradicional (Yécora F70) es negativo porque los costos se calcularon a precios de 2002.

La variedad Salamanca 7S5 convirtió en rentable una actividad productiva que con el uso de las variedades anteriores de trigo ya no lo era.
6.2. Costos de producción con las distintas variedades.
A continuación se detallan los costos de producción en trigo de riego que generalmente tiene el productor. Los costos de producción con las variedades: Yécora F70, Toluca F73 y Cajeme F70, son superiores a los de la variedad Salamanca S75 en $ 400.00, debido a que dichas variedades requerían una aplicación de fungicida.

Cuadro 4. Costos directos de producción de trigo de riego por hectárea (Pesos del año 2022).

<table>
<thead>
<tr>
<th>Concepto</th>
<th>Variada Yécora F70 ($)</th>
<th>Variada Salamanca S75 ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rastrillo (dos pasadas)</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>Empana</td>
<td>250</td>
<td>250</td>
</tr>
<tr>
<td>Sementes (maquina de cervezas)</td>
<td>350</td>
<td>350</td>
</tr>
<tr>
<td>Fertilizante (fórmula 240-60-00 INIFAP)</td>
<td>1853</td>
<td>1653</td>
</tr>
<tr>
<td>Herbicidas (ejemplo: Ambar+Topik)</td>
<td>980</td>
<td>980</td>
</tr>
<tr>
<td>Fungicida</td>
<td>400</td>
<td>0</td>
</tr>
<tr>
<td>Riegos (4)</td>
<td>1650</td>
<td>1600</td>
</tr>
<tr>
<td>Insecticida (Paralin Mático)</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Jornales riego (4)</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>Jornales insecticida</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Jornales herbicida</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Cosicha</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>Seguro Agrícola</td>
<td>250</td>
<td>380</td>
</tr>
<tr>
<td>TOTAL</td>
<td>8,782</td>
<td>8,673</td>
</tr>
</tbody>
</table>

6.3. Beneficios adicionales.
Los beneficios adicionales de la variedad Salamanca S75 con respecto a las variedades anteriores: Yécora F70, Toluca F73 y Cajeme F70, consisten en que Salamanca S75 no requiere de aplicación de fungicida alguna, mientras que las variedades anteriores a ella, sí. Esto tiene un impacto ambiental considerable, puesto que se hacía una aplicación en 180,000 hectáreas.
6.4. Impacto potencial.
Generalmente, el impacto potencial de una nueva técnica de producción se representa como un desplazamiento hacia la derecha de la curva de oferta. Este desplazamiento se corresponde con el aumento en la producción que surge del incremento en los rendimientos, inducido por la innovación técnica en cuestión. Este cambio en la producción se debe transformar en un desplazamiento vertical equivalente que representa el efecto de ese cambio en la reducción del costo unitario (Wood, You y Baiti, 2001). Este desplazamiento vertical se designa como K^*.

Este potencial casi nunca se alcanza, pues que generalmente la probabilidad de éxito y el nivel de adopción son menores al 100%. En el caso que se está analizando, la probabilidad de éxito de la adopción es de 95% y el nivel de adopción máximo es de 90.0% (Solís, 2003 y 2004). Otra de las razones por las cuales el impacto potencial no se alcanza es que la adopción no es inmediata, sino que sigue un proceso específico que requiere de varios años para completarse.

6.5. Proceso sigmoidal de adopción.
Por sus altos rendimientos en comparación con las variedades liberadas antes, Salamanca S75, es la variedad más importante en el estado de Guanajuato. A partir de 1972 se empezó a evaluar con ensayos de rendimiento en el CEBAJ, y en los ciclos 1973-74 y 1974-75 en diferentes localidades de la región del Bajío. Las características morfológicas fueron medidas en el CEBAJ, bajo condiciones de riego en el ciclo O-I 1973-74 y 1974-75.

Esta variedad empezó a sembrarse en el ciclo 1977-1978, pero fue hasta noviembre de 1979 cuando fue registrada con la clave TR-056-091179. De acuerdo con Solís (2003), durante el periodo 1978-1981 se sembraron en promedio 15,000 ha, con ella. Por sus cualidades agronómicas y fitopatológicas y por su muy buena calidad industrial, se adoptó en más del 90% de la superficie del Bajío entre 1982 y 1989. En ese periodo se sembraron 162,000 hectáreas con ella, equivalentes al 90% de la superficie sembrada con trigo en El Bajío (Solís, 2003 y 2004). A partir de 1990, la superficie sembrada con Salamanca S75 empezó a reducirse debido a la liberación de la variedad Saturno S86. Esta tendencia de reducción se aceleró con la liberación de la variedad Cortazar S94, que desde 1996 empezó a ser reconocida por los productores como la variedad más productiva del Bajío. Según Solís (2003), entre 1990 y 1996 se sembraron 106,000 ha con Salamanca S75, equivalentes al 60% de la superficie sembrada con trigo en la región. Durante el periodo 2000-2004, se sembró en aproximadamente 24,000 hectáreas que representan el 30% de la superficie dedicada a este cultivo del Bajío durante los años señalados (Solís, 2003).

Esta variedad ahora es susceptible al acame y a las nuevas razas de roya que han surgido en los últimos años, razones por las que se asume que la vigencia
de esta variedad terminará en el próximo año, no obstante que se usará en reducidas superficies en los dos o tres años siguientes.

Con el fin de estimar los beneficios económicos inducidos por la variedad Salamanca S75, se asume de acuerdo con Rogers (1992), que el proceso de adopción es estocástico y que tiene forma funcional sigmoidal.

La trayectoria sigmoidal-escalonada que describe ese proceso de adopción de la variedad Salamanca S75 a través de los años, es la siguiente:

![Gráfico de adopción de la variedad Salamanca S75](image)

Figura 1. Adopción de la Variedad Salamanca S75. (Pondéradas)

El éxito alcanzado por esta variedad se debe a sus altos rendimientos y a su resistencia a las razas de roya lineal amarilla (Puccinia striiformis f. sp. triticci), todo lo cual le permitió mantenerse en la preferencia de los productores a lo largo de los últimos 30 años.

6.6. Proceso estocástico de adopción. No es correcto asumir la adopción con certidumbre (Rogers, 1992). Por eso es que, con el fin de aumentar la verosimilitud de los estimadores evaluativos, se asume que la probabilidad de éxito es 95%. Se consideró un nivel máximo de adopción de 90.0% y que ha teniendo un proceso de disminución muy considerable de la superficie sembrada con la variedad Salamanca S75, como se indicó más arriba.
6.7. Estructuras de mercado.

Antes de manifestar sus beneficios económicos, los impactos productivos de una determinada innovación técnica tienen que pasar a través de la firma cría del mercado. Ahí es donde los costos de producción individuales son medidos con el patrón general de valores y precios del sistema económico.

De acuerdo con Wood, You y Baix (2001), varios son los modelos de mercado más usuales en la evaluación económica de impactos tecnológicos: el modelo de economía cerrada, el modelo de mercados horizontales múltiples, el modelo de mercados con niveles múltiples y, por último, el modelo de economías abiertas. En la presente evaluación se usó el modelo de economías abiertas, pequeñas y con distorsiones, porque es la estructura más adecuada a las condiciones actuales de México. Se asumió que el mercado de trigo en México es competitivo, y que para los productores agrícolas los precios del trigo son considerados como parámetros dados.

En el proceso de modelación del funcionamiento del mercado, las distintas clases de elasticidades son un componente esencial. La elasticidad precio de la oferta de trigo en México que se usó en esta evaluación es igual a 0.92 (Garza C., A., 1988), la cual indica que un aumento del precio en una unidad porcentual hace aumentar la oferta de trigo en 0.92%. La elasticidad precio de la demanda que se usó en esta evaluación es igual a –0.16 (Garza C., A., 1988). Este número indica que la demanda por trigo es inelástica y, por consiguiente, se trata de un bien de consumo básico.

De acuerdo con el texto oficial del TLCAN (SECOFI, 1994), el arancel acordado para las importaciones de trigo fue de 15% durante el período 1994-2002. A partir de enero del año 2003, las cuotas de importación y el arancel desaparecieron. Se consideró un precio internacional equivalente, sin distorsiones, de $1,410.00/ton.

En una economía pequeña y abierta, los precios están determinados, en última instancia, por el mercado mundial. En estas economías, las innovaciones técnicas se manifiestan, exclusivamente, en términos de aumentos en los excedentes económicos de los productores. Los excedentes de los consumidores son nulos y, en consecuencia, las innovaciones técnicas no reducen los precios al consumidor, sencillamente porque los precios se determinan fuera del país. Si, por el contrario, el país fuese una economía grande y pudiese influir en el precio internacional del trigo, entonces, el impacto económico de una innovación técnica produciría excedentes para los productores y para los consumidores internos. Además, reduciría el precio internacional, por lo que induciría excedentes a los consumidores de otros países. Un planteamiento más general de las implicaciones económicas de las innovaciones técnicas se encuentra en Edwards, Geoff y Freebairn (1984).
Al igual que para la actualización de los costos del proyecto, la tasa real de descuento utilizada para la actualización de los beneficios económicos es del 9.5%, que corresponde a la tasa media real que reciben los flujos de capital extranjero dirigidos a inversiones de portafolio o a la inversión extranjera directa (González-Brindle, 1999).

Una vez parametrizado el modelo de acuerdo con la información previamente descrita, se le resolvió computacionalmente siguiendo un procedimiento numérico análogo al que sigue el paquete DREAM 5.2 (IFPRI, 2001). La secuencia temporal de los beneficios económicos inducidos por la variedad de trigo Salamanca S75 se muestra en el siguiente cuadro:

Cuadro 5. Beneficios económicos inducidos por la variedad de trigo Salamanca S75. (Millones de pesos del año 2002).

<table>
<thead>
<tr>
<th>Año</th>
<th>Corrientes</th>
<th>Actualizados 2002 a 100 (r = 9.5%)</th>
<th>Corrientes</th>
<th>Actualizados 2002 a 100 (r = 9.5%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1975</td>
<td>12.3</td>
<td>142.7</td>
<td>1991</td>
<td>443.2</td>
</tr>
<tr>
<td>1976</td>
<td>21.1</td>
<td>222.9</td>
<td>1992</td>
<td>443.2</td>
</tr>
<tr>
<td>1977</td>
<td>38.0</td>
<td>348.1</td>
<td>1993</td>
<td>443.2</td>
</tr>
<tr>
<td>1978</td>
<td>61.6</td>
<td>543.5</td>
<td>1994</td>
<td>383.2</td>
</tr>
<tr>
<td>1979</td>
<td>73.7</td>
<td>594.4</td>
<td>1995</td>
<td>383.2</td>
</tr>
<tr>
<td>1980</td>
<td>107.9</td>
<td>1,162.9</td>
<td>1996</td>
<td>263.2</td>
</tr>
<tr>
<td>1981</td>
<td>441.8</td>
<td>2,970.9</td>
<td>1997</td>
<td>308.7</td>
</tr>
<tr>
<td>1982</td>
<td>564.8</td>
<td>4,063.2</td>
<td>1998</td>
<td>234.2</td>
</tr>
<tr>
<td>1983</td>
<td>566.8</td>
<td>3,729.0</td>
<td>1999</td>
<td>159.7</td>
</tr>
<tr>
<td>1984</td>
<td>564.8</td>
<td>3,405.5</td>
<td>2000</td>
<td>85.2</td>
</tr>
<tr>
<td>1985</td>
<td>564.8</td>
<td>3,110.0</td>
<td>2001</td>
<td>85.2</td>
</tr>
<tr>
<td>1986</td>
<td>564.8</td>
<td>2,840.2</td>
<td>2002</td>
<td>85.2</td>
</tr>
<tr>
<td>1987</td>
<td>564.8</td>
<td>2,593.6</td>
<td>2003</td>
<td>78.0</td>
</tr>
<tr>
<td>1988</td>
<td>564.8</td>
<td>2,368.8</td>
<td>2004</td>
<td>75.0</td>
</tr>
<tr>
<td>1989</td>
<td>564.8</td>
<td>2,163.2</td>
<td>2005</td>
<td>37.7</td>
</tr>
<tr>
<td>1990</td>
<td>443.2</td>
<td>1,317.0</td>
<td>2006</td>
<td>0.3</td>
</tr>
</tbody>
</table>

TOTAL: 39,548.5

6.9. Valor actual neto (VAN).

De acuerdo con Gitinger (1989), el valor actual neto es la suma de los flujos netos del proyecto actualizados a la tasa de interés social. La tasa beneficio-costo representa el resultado de dividir la suma del flujo de beneficios actualizados entre la suma del flujo de costes totales actualizados. La tasa interna de rentabilidad es la tasa que reduce a cero el flujo corriente de beneficios netos del proyecto.
Cuadro 6. Valor Actual Neto de los beneficios económicos inducidos por la variedad Salamanca STS (Milones de pesos del año 2002).

<table>
<thead>
<tr>
<th>Año</th>
<th>Beneficios Actualizados ($ + 8.5%)</th>
<th>Costos Actualizados ($ + 8.5%)</th>
<th>Valor Actual Neto VAM = ($ - C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1987</td>
<td>52.8</td>
<td>53.8</td>
<td>0.0</td>
</tr>
<tr>
<td>1988</td>
<td>48.9</td>
<td>48.3</td>
<td>0.6</td>
</tr>
<tr>
<td>1989</td>
<td>44.1</td>
<td>44.1</td>
<td>0.0</td>
</tr>
<tr>
<td>1990</td>
<td>40.3</td>
<td>40.3</td>
<td>0.0</td>
</tr>
<tr>
<td>1971</td>
<td>36.6</td>
<td>36.6</td>
<td>0.0</td>
</tr>
<tr>
<td>1972</td>
<td>33.6</td>
<td>33.6</td>
<td>0.0</td>
</tr>
<tr>
<td>1973</td>
<td>30.7</td>
<td>30.7</td>
<td>0.0</td>
</tr>
<tr>
<td>1974</td>
<td>28.0</td>
<td>28.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1975</td>
<td>14.2</td>
<td>14.2</td>
<td>0.0</td>
</tr>
<tr>
<td>1976</td>
<td>12.9</td>
<td>12.9</td>
<td>0.0</td>
</tr>
<tr>
<td>1977</td>
<td>13.5</td>
<td>13.5</td>
<td>0.0</td>
</tr>
<tr>
<td>1978</td>
<td>12.4</td>
<td>12.4</td>
<td>0.0</td>
</tr>
<tr>
<td>1979</td>
<td>11.3</td>
<td>11.3</td>
<td>0.0</td>
</tr>
<tr>
<td>1980</td>
<td>10.3</td>
<td>10.3</td>
<td>0.0</td>
</tr>
<tr>
<td>1981</td>
<td>9.4</td>
<td>9.4</td>
<td>0.0</td>
</tr>
<tr>
<td>1982</td>
<td>8.6</td>
<td>8.6</td>
<td>0.0</td>
</tr>
<tr>
<td>1983</td>
<td>7.9</td>
<td>7.9</td>
<td>0.0</td>
</tr>
<tr>
<td>1984</td>
<td>7.2</td>
<td>7.2</td>
<td>0.0</td>
</tr>
<tr>
<td>1985</td>
<td>6.5</td>
<td>6.5</td>
<td>0.0</td>
</tr>
<tr>
<td>1986</td>
<td>6.0</td>
<td>6.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1987</td>
<td>5.5</td>
<td>5.5</td>
<td>0.0</td>
</tr>
<tr>
<td>1988</td>
<td>5.0</td>
<td>5.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1989</td>
<td>4.8</td>
<td>4.8</td>
<td>0.0</td>
</tr>
<tr>
<td>1990</td>
<td>4.2</td>
<td>4.2</td>
<td>0.0</td>
</tr>
<tr>
<td>1991</td>
<td>3.9</td>
<td>3.9</td>
<td>0.0</td>
</tr>
<tr>
<td>1992</td>
<td>3.7</td>
<td>3.7</td>
<td>0.0</td>
</tr>
<tr>
<td>1993</td>
<td>3.5</td>
<td>3.5</td>
<td>0.0</td>
</tr>
<tr>
<td>1994</td>
<td>3.3</td>
<td>3.3</td>
<td>0.0</td>
</tr>
<tr>
<td>1995</td>
<td>3.1</td>
<td>3.1</td>
<td>0.0</td>
</tr>
<tr>
<td>1996</td>
<td>3.0</td>
<td>3.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1997</td>
<td>2.9</td>
<td>2.9</td>
<td>0.0</td>
</tr>
<tr>
<td>1998</td>
<td>2.8</td>
<td>2.8</td>
<td>0.0</td>
</tr>
<tr>
<td>1999</td>
<td>2.7</td>
<td>2.7</td>
<td>0.0</td>
</tr>
<tr>
<td>2000</td>
<td>2.6</td>
<td>2.6</td>
<td>0.0</td>
</tr>
<tr>
<td>2001</td>
<td>2.5</td>
<td>2.5</td>
<td>0.0</td>
</tr>
<tr>
<td>2002</td>
<td>2.4</td>
<td>2.4</td>
<td>0.0</td>
</tr>
<tr>
<td>2003</td>
<td>2.3</td>
<td>2.3</td>
<td>0.0</td>
</tr>
<tr>
<td>2004</td>
<td>2.2</td>
<td>2.2</td>
<td>0.0</td>
</tr>
<tr>
<td>2005</td>
<td>2.1</td>
<td>2.1</td>
<td>0.0</td>
</tr>
<tr>
<td>2006</td>
<td>2.0</td>
<td>2.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2007</td>
<td>1.9</td>
<td>1.9</td>
<td>0.0</td>
</tr>
<tr>
<td>2008</td>
<td>1.8</td>
<td>1.8</td>
<td>0.0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>38,549.5</td>
<td>49.7</td>
<td>38,591.8</td>
</tr>
</tbody>
</table>

6.10. Indicadores Evaluativos.
Trevé son los indicadores evaluativos que utilizaremos: el valor actual neto, la tasa beneficio/costo y la tasa interna de rentabilidad, cuyo cálculo se llevará a cabo de acuerdo con lo establecido por Dasgupta, Sen y Marglin (1982) y Gittinger (1989).
El Cuadro 6, claramente indica que el valor actual neto (VAN) de los beneficios económicos inducidos por el uso de la variedad de trigo Salamanca S75 en la región del Bajo es 38 mil millones de pesos del año 2002.

Los beneficios económicos netos inducidos por esta aportación tecnológica representan 42 veces el presupuesto fiscal del INIFAP durante el año de 2003.

La tasa beneficio-costo, B/C, es 84.2. Esto significa que por cada peso invertido en la generación y difusión de esta variedad, el país obtuvo 5.84.20 en beneficios económicos netos para los agricultores de la región.

La tasa interna de rentabilidad (TIR) es 42%, la cual supera, con mucho, tanto a la tasa real de intereses, 9.5% (González-Estrada, 1999), como a la tasa de rentabilidad social del capital libre de riesgo en México: 15.7% (González-Estrada, 2002).

Estos resultados representan evidencias más que suficientes a favor de la hipótesis central de este proyecto de investigación: «los recursos destinados a la investigación son una inversión, más que un gasto, y tal inversión es altamente retribuible tanto desde el punto de vista privado, como de la economía en su conjunto».
Impacto Económico del
Mejoramiento Genético del
Trigo en México: Variedad
Salamanca S75

Conclusiones
Impacto Económico del
Mejoramiento Genético del
Trigo en México: Variedad
Salamanca S75
CONCLUSIONES

El impacto económico neto de la variedad de trigo Salamanca S75 generada por el INIFAP para la región del Bajío es de 38 mil millones de pesos del año 2002, lo cual justifica el presupuesto fiscal del INIFAP durante 42 años, tomando como referencia su presupuesto fiscal del año 2003. Este monto equivale también a un tercio del presupuesto federal destinado al campo en el mismo año.

La generación de esta variedad requirió de ocho años de investigación intensa y de una erogación de 314.4 millones de pesos en tareas de investigación y de 143.3 millones en difusión y extensión, lo que suma un costo total actualizado de 457.7 millones de pesos a precios del año 2002.

Durante una década, esta variedad se sembró anualmente en 160 mil hectáreas en promedio, equivalentes al 90% de la superficie en el Bajío (Guanajuato, Michoacán y Jalisco) cultivada con trigo.

Los beneficios ambientales, aunque no cuantificados, son enormes, pues la buena resistencia a las royas que tenía Salamanca S75 evitó la aplicación de fungicidas en una superficie equivalente a 2.5 millones de hectáreas durante los 30 años en que se ha sembrado. Esto representó un ahorro de 6,868 millones de pesos a los agricultores de la región.

Estas son las contribuciones netas del INIFAP al desarrollo económico de México, a través de la variedad de trigo Salamanca S75 generada para la región del Bajío.
Serie: Estudios de Evaluación del Impacto Económico de Productos del INIFAP
Impacto Económico del
Mejoramiento Genético del
Trigo en México: Variedad
Salamanca S75
Impacto Económico del
Mejoramiento Genético del
Trigo en México: Variedad
Salamanca S75
REFERENCIAS BIBLIOGRÁFICAS

González-Estrada, Adrián. 1999. A Dynamic General Equilibrium Model of Mexico: Macroeconómica Dynamics under NAFTA. Ph.D. Thesis submitted to the Graduate School of the University of Minnesota, Minneapolis, M. N.

SAGARPA. 2000. Memoria del Simposio Nacional de la Red de Extensionismo
y Asistencia Técnica Rural. Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación. México, D. F.

Impacto Económico del
Mejoramiento Genético del
Trigo en México: Variedad
Salamanca S75

Anexo:
Método de Evaluación del Impacto Económico de las Tecnologías Generadas por el INIFAP
Impacto Económico del
Mejoramiento Genético del
Trigo en México: Variedad
Salamanca S75
ANEXO:
MÉTODO DE EVALUACIÓN DEL IMPACTO ECONÓMICO DE LAS TECNOLOGÍAS GENERADAS POR EL INIFAP

Adrián González-Estrada 1 y Stanley Wood 2.

Los métodos más comúnmente usados para la evaluación de los beneficios y costos de la investigación agropecuaria y forestal, se basan en la cuantificación de los excedentes económicos inducidos por los productos generados por dicha actividad económica, tan peculiar.

El objetivo del presente capítulo es exponer la estructura de dicho método. Con el fin de hacerlo comprensible, en la primera parte, se presentará el caso más simple: el de una economía cerrada. Posteriormente, se expondrá el modelo para el caso de una economía abierta, pequeña y con distortiones. Después, se desarrollarán, el modelo dinámico de adopciones tecnológicas y las funciones de distribución de probabilidades de los niveles de adopción. Finalmente, se explicará el procedimiento para la calibración del modelo.

9.1. Caracterización del logro tecnológico

Para cada logro tecnológico evaluado, se trabajó conjuntamente con los investigadores que generaron ese logro. Se hizo lo posible para que la descripción técnica de cada logro tecnológico fuera rigurosa y estuviese respaldada por el mayor número de referencias bibliográficas pertinentes. Se exigió en todos los casos que los datos correspondientes a la superficie de adopción y a los impactos productivos al nivel de agricultores, estuvieran respaldados por evidencias oficiales verificables.

En comparación con el procedimiento alternativo para la captura de esa información, que consiste en el levantamiento de encuestas directamente en campo mediante muestreo estadístico, el procedimiento propuesto es de menor costo, permitiría disponer de resultados en un periodo considerablemente más corto y con una precisión cercana a la que se obtendría con una encuesta por muestreo.

Para la realización de las tareas correspondientes a esta etapa, fue crucial el apoyo de la Coordinación General de Investigación y Desarrollo del INIFAP, para solicitar oficialmente la profunda colaboración de los investigadores que generaron el logro tecnológico bajo estudio.

1 Líder Nacional del Programa de Economía Agrícola, CENAMEX, CRIDE, INIFAP.
2 Research Scientist, International Food Policy Research Institute, IFPRI, Washington, D. C.
9.2. Excedentes económicos derivados de la investigación

Antes de desarrollar el modelo a usar en esta investigación, especialmente adecuado para el caso de una economía abierta, pequeña y con distorsiones arancelarias, se expondrá sucintamente a continuación el esquema general del modelo de excedentes económicos generados por la investigación científica y tecnológica orientada hacia la producción de técnicas de producción más eficientes. Este modelo se encuentra explicado en el excelente trabajo de Alston, Norton y Pardey (1995). El antecedente inmediato del presente capítulo es González-Estrada (1991).

La introducción al proceso productivo de una técnica más eficiente desplaza hacia la derecha la curva de oferta y hace surgir un nuevo punto de equilibrio con mayor producción y a un precio menor. Dentro de los marcos del análisis de equilibrio parcial de una economía cerrada, el beneficio anual de la introducción de una nueva técnica al proceso productivo, también llamado: excedente económico inducido por la nueva técnica, se representa gráficamente como el área bajo de la curva de demanda y entre las dos curvas de oferta: la original y la que surge del cambio técnico. La representación gráfica es la siguiente:

![Gráfico de excedente económico](image)

Figura 2. Excedente económico inducido por la investigación.

El beneficio anual inducido por la investigación agrícola, ΔTS, es igual a la suma de dos clases de beneficios económicos: el que surge de la reducción de los costos de producción de la cantidad inicialmente producida, I_0AC_l, y el que surge de la diferencia entre el incremento de la producción, Q_0ABQ_I, y el aumento en el costo total para producir ese incremento: Q_0CBQ_I. Es decir:

$$\Delta TS = I_0\text{ABI}_I$$
$$= I_0\text{AC}_l + ABC$$
$$= I_0\text{AC}_l + \langle Q_0\text{ABQ}_I - Q_0\text{CBQ}_I \rangle.$$
Un enfoque equivalente es el que divide al beneficio anual inducido por las técnicas generadas por la investigación en dos partes: el beneficio a los productores, ΔPS, y el beneficio a los consumidores, ΔCS, que surge de la disminución del precio y del consecuente aumento en el consumo.

La formulación algebraica de las relaciones anteriores es la siguiente:

$$\Delta TS = \Delta PS + \Delta CS = (P_1BI_1 - P_0A_1) + P_0ABP_1$$

Si se asume que el cambio técnico se manifiesta en un desplazamiento paralelo de la curva de oferta, entonces: $DCI_1 = P_0A_1$, lo que implica que:

$$\Delta TS = \Delta PS + \Delta CS = P_1ECD + BCE = P_1BCD,$$

Figura 3. Excedente económico inducido por la investigación.

en donde: P_1ECD representa el beneficio neto con respecto al nivel de la producción actual, y BCE simboliza a los beneficios por concepto del aumento en la producción: $(Q_1 - Q_0)$. En consecuencia, se puede también definir al beneficio anual inducido por las técnicas generadas por la investigación de la manera siguiente:

$$\Delta TS = \Delta PS + \Delta CS = P_1BCD + P_0ABP_1$$
Gráficamente:

Figura 4. Componentes del excedente económico inducido por la investigación

9.3. Parametrización del excedente económico total, \(\Delta TS \)
La definición paramétrica del beneficio anual inducido por la investigación se construye a través de las dos siguientes ecuaciones de definición:

\[
\Delta TS = \Delta PS + \Delta CS \\
\Delta PS = P_0 Q_0 (K - Z)(1 + 0.5Z\eta) \\
\Delta CS = P_0 Q_0 Z(1 + 0.5Z\eta)
\]

En consecuencia:

\[
\Delta TS = P_0Q_0K(1 + 0.5Z\eta),
\]

en donde:

- \(K\), es el coeficiente que mide el desplazamiento vertical de la curva de oferta expresado como una fracción del precio inicial:
 \[
 K = \frac{I_0 - I_1}{P_0};
 \]
- \(\eta > 0\), representa el valor absoluto de la elasticidad precio de la demanda;
- \(\varepsilon > 0\), representa el valor absoluto de la elasticidad precio de la oferta y,
- \(Z\), simboliza la reducción del precio debido al desplazamiento de la curva de oferta, y se define de la manera siguiente:
 \[
 Z = \frac{K\varepsilon}{\varepsilon + \eta} = -\frac{(P_1 - P_0)}{P_0}
 \]
Demostración. (La demostración de estos resultados es por construcción). De acuerdo con Alston, Norton y Padey (1995), Z se obtiene al resolver el sistema simultáneo:

\[\begin{align*}
Q_s &= \alpha + \beta (P + k) = (\alpha + \beta k) + \beta P \\
Q_d &= \gamma - \delta P,
\end{align*} \]

para el precio como una función de los parámetros de pendiente y de ordenada al origen, considerando al desplazamiento de la oferta, k como un cambio en la ordenada al origen de la curva de oferta y expresándolo, finalmente, en términos de elasticidades precio. En el sistema anterior,

\[k = \left(\frac{P_0 - d}{P_0} \right) \quad y \quad K = \frac{k}{P_0} = \left(\frac{P_0 - d}{P_0} \right), \]

en donde, como ya se dijo, K es el coeficiente que mide el desplazamiento vertical de la curva de oferta, expresado como una fracción del precio inicial.

En equilibrio, \(QS = QD = Q \); es decir:

\[\alpha + \beta (P + k) = (\alpha + \beta k) + \beta P = \gamma - \delta P, \]

por lo que el precio de equilibrio es:

\[P = \frac{\gamma - \alpha - \beta k}{\beta + \delta}. \]

El precio de equilibrio inicial, en el que no se ha introducido todavía la nueva técnica de producción está dado por la siguiente expresión:

\[P_0 = \frac{\gamma - \alpha}{\beta + \delta}, \quad \text{para} \quad k = 0. \]

El nuevo precio de equilibrio que se forma después de la introducción de la nueva técnica de producción es:

\[P_1 = \frac{\gamma - \alpha - \beta K P_0}{\beta + \delta}, \quad \text{para} \quad k = KP_0. \]
El cambio en el precio de equilibrio inducido por el cambio técnico es el siguiente:

\[(P_1 - P_0) = \frac{\beta K P_0}{\beta + \delta}\]

y el valor absoluto del cambio relativo en el precio de equilibrio está dado por:

\[\left| \frac{P_1 - P_0}{P_0} \right| = \frac{\beta k}{\beta + \delta}\]

Con el fin de convertir las pendientes en elasticidades, multiplíquese el numerador y el denominador del miembro derecho de la expresión anterior por la fracción: \(P_0 / Q_0\). El resultado es el siguiente:

\[Z = \frac{P_1 - P_0}{P_0} = \frac{\epsilon K}{\epsilon + \eta}\]

De acuerdo con esta expresión, se puede redefinir \(\Delta PS\) en términos de elasticidades como se indica a continuación:

\[\Delta PS = (P_1 - d)Q_0 + 0.5 (P_1 - d)(Q_1 - Q_0)\]

\[= (P_1 - d)Q_0 \left(1 + 0.5 \frac{(Q_1 - Q_0)}{Q_0} \right)\]

Ahora bien, si definimos:

\[(P_1 - d) = (P_0 - d) - (P_0 - P_1) = K P_0 - Z P_0,\]

\[(Q_1 - Q_0) / Q_0 = Z\eta,\]

entonces el excedente del productor finalmente se convierte en:

\[\Delta PS = P_0 Q_0 (K - Z) (1 + 0.5 Z\eta).\]
El excedente del consumidor se define como:

$$\Delta CS = (P_0 - P_1)Q_0 + 0.5(P_0 - P_1)(Q_1 - Q_0)$$

$$= (P_0 - P_1)Q_0 + \langle 1 + 0.5 \frac{Q_1 - Q_0}{Q_0} \rangle .$$

Dado que: \(Z = \frac{P_1 - P_0}{P_0} \) y \(\frac{Q_1 - Q_0}{Q_0} = Z \eta \), entonces también se puede definir el excedente del consumidor de la manera que se indica a continuación:

$$\Delta CS = P_0Q_0Z(1 + 0.5Z\eta) .$$

El excedente total inducido por la técnica de producción generada por la investigación es la suma del excedente económico del productor y del excedente del consumidor:

$$\Delta TS = P_0Q_0K(1 + 0.5Z\eta) .$$

9.4. Excedentes económicos inducidos por la investigación en economías pequeñas, abiertas y con distorsiones

Se dice que una economía es pequeña, si su participación en el comercio internacional es de tal magnitud que sus decisiones económicas y comerciales no afectan el precio internacional (Houck, 1992). Analíticamente, la diferencia entre una economía grande y una pequeña es que, si ambas son importadoras, la primera presenta una función de oferta del resto del mundo con pendiente positiva, mientras que la de la segunda es una recta horizontal. Por otra parte, la función de demanda en exceso del resto del mundo que afronta la economía exportadora grande tiene pendiente negativa, mientras que en el caso de una economía exportadora pequeña, la función correspondiente es horizontal. Por consiguiente, las decisiones domésticas de los países grandes sí afectan a los demás países, puesto que influyen en el comportamiento de los precios internacionales. El caso opuesto es el de los países pequeños.

Considérese una economía importadora y pequeña, que impone una tarifa fija a las importaciones de un determinado producto. La producción de ese país es insuficiente para cubrir la demanda al precio vigente en el mercado internacional. Con el fin de proteger a los productores nacionales de la competencia exterior, el gobierno impone una tarifa, \(\tau > 0 \), a las importaciones de dicho bien. La aplicación de la tarifa aumenta el precio interno y propicia una mayor producción dentro del país, reduciendo con ello el nivel de las importaciones.

¿Quién gana y quién pierde con esta medida distorsionadora? ¿Cuáles son los beneficios y costos económicos? ¿Cuál es el saldo neto y sus efectos en el bienestar social?
De acuerdo con Houck (1992), la imposición de dicha tarifa tiene los siguientes efectos: 1) beneficia a los productores de ese bien por un monto equivalente al área A; 2) beneficia al erario público, pues aumenta la recaudación por concepto del cobro de tarifas en C; 3) disminuye el excedente de los consumidores por un monto de \((A + B + C + D)\), en relación con el equilibrio inicial. Este rubro representa el costo de esta política para los consumidores. Claramente, el saldo de esta política es negativo: \(- (B + D)\). Perjudica a la economía, pues produce pérdidas de eficiencia, B. La razón es que parte de la producción de otros sectores es sacrificada al producir más del bien protegido a un precio superior al que se podría comprar en el mercado exterior. Perjudica a los consumidores con un monto equivalente a D. Representa el efecto ingreso negativo que para los consumidores representa el aumento de precios desde \(P_0\) hasta \(P_t\). La representación de lo anterior, es la Figura 5.

Figura 5. Efecto económico de un arancel a las importaciones bajo la hipótesis de país pequeño.

¿De qué manera se manifiestan dentro del esquema anterior los beneficios inducidos por la investigación?

De acuerdo con Alston, Norton y Pardey (1995), la tarifa aumenta el precio interno de \(P_w\) a \((1 + \tau) P_w\). El beneficio total de la investigación, \(CDI_t\), no se ve afectado por la tarifa, aunque con ella el excedente de los productores aumenta. La aplicación productiva de las técnicas generadas por la investigación reduce las importaciones en: \(\triangle PQ_0 \cdot \triangle Q_0\). También reduce los ingresos fiscales en el equivalente a: \(\triangle TP \cdot \triangle Q_0\). Si se reemplaza a \((1 + \tau) P_w\) por \(P_{MIN}\), entonces:

\[
\triangle PS = (1 + \tau) P_w Q_0' K (1 + 0.5 K \varepsilon) \\
\triangle GS = -TP \cdot Q_0' K \varepsilon \\
\triangle TS = \triangle PS + \triangle CS \\
= (1 + \tau) P_w Q_0' K (1 + 0.5 K \varepsilon) - TP \cdot Q_0' K \varepsilon .
\]
La representación gráfica es la siguiente:

Figura 6. Beneficios económicos de la investigación en un país pequeño con aranceles.

9.5. Modelo dinámico de difusión de técnicas de producción

En la mayoría de los casos, las innovaciones tecnológicas nunca llegan a ser adoptadas por la totalidad de los agricultores pertenecientes a la región objetivo, por lo que los niveles de adopción se ubican significativamente por debajo de 100%. De acuerdo con Alston, Norton y Pardey (1995), en los modelos de evaluación ex-ante la adopción de tecnología es considerada como el proceso mediático entre el efecto potencial de la investigación, K_{MAX}, y el efecto real, $K(t)$, de la misma. Dicho de otra manera, para medir el desplazamiento de la curva de oferta inducido por la investigación, se puede combinar el desplazamiento potencial máximo de la oferta, con la secuencia intertemporal: \{ k_{t} \}, basada, tanto en los datos observados de adopción, como en el modelo de difusión más adecuado al problema bajo estudio (Stanley y Baitx, 1995).

El modelo que ha de utilizarse aquí es el modelo logístico o sigmoidal. La hipótesis fundamental del modelo es que, el número de agricultores que adoptan la innovación $dA(t)$ en el período $d\ t$, es directamente proporcional al número de agricultores, $A(t)$, que previamente la adoptaron, e inversamente proporcional a $(N-A)$, el número de los que restan por adoptar la nueva técnica de producción (González Estrada, 1992). La formulación matemática de esta hipótesis es la siguiente:

$$d\ A(t) = \theta \ A \ (N - A) \ dt.$$
De acuerdo con González Estrada (1992), la solución de esta ecuación diferencial es:

\[A(t) = \frac{Ne^{\theta t}}{N - 1 + e^{\theta t}}. \]

Lekvall y Wahlbin (1993), señalan que la mejor parametrización de la curva logística anterior es la siguiente:

\[A(t) = \frac{A^{MAX}}{1 + e^{-(a + \beta t)}}. \]

en donde: \(A^{MAX} \), representa el porcentaje máximo de adopción.

9.6. Niveles de confianza para los beneficios estimados de la investigación

La incertidumbre inherente a la estimación de los beneficios de la investigación, hace necesaria la inclusión en el análisis de los indicadores del nivel de confianza de los estimadores puntuales de tales beneficios. De acuerdo con Alston, Norton y Pardey (1995), tal información es útil para indicar el grado de confiabilidad con que deben ser tomadas en cuenta tales estimaciones.

Dado un valor de \(K^{MAX} \), existe una función de distribución de probabilidades (FDP) del estimator de los beneficios de la investigación. Con el fin de estimar las varianzas y covarianzas, Scobie y Jacobsen (1992), sugieren el siguiente procedimiento: 1) llevar a cabo distintas simulaciones de los beneficios de la investigación con base en la selección aleatoria de los parámetros de una FDP triangular. Esta distribución tiene tres parámetros: \(z_m \), el evento modal o más probable; \(z_i \), el evento más pequeño, y \(z_h \), el evento más grande; 2) esos valores son mapeados en una FDP triangular; 3) luego, se construye la función de distribución acumulativa (FDA) con dos segmentos cuadráticos, uno que empieza en cero para el evento más pequeño, y el otro, empezando en uno, para el más grande. Estos dos segmentos, representados por los lados de la FDP triangular, convergen al evento modal (Alston, Norton y Pardey, 1995).
La ilustración gráfica es la siguiente:

Figura 7. FDP triangular
Figura 8. Función de distribución acumulativa

9.7. Calibración del modelo
La calibración de los parámetros del modelo, aquí presentada, corresponde a la desarrollada por Alston, Norton y Pardey (1995).

Parametrización de la estructura del mercado

Se asume que el mercado del bien en cuestión es perfectamente competitivo, y que las funciones de oferta y demanda están dadas, respectivamente, por las siguientes expresiones:

\[
Q_{it} = \alpha_{it} + \beta_{it} PP_{it}
\]

\[
C_{it} = \gamma_{it} + \delta_{it} PC_{it}
\]

en donde i representa a la región, y t a los años. La calibración de los parámetros del sistema simultáneo anterior para el año inicial, t = 0, es la siguiente:

\[
\alpha_{i0} = (1 - \varepsilon_{i0}) Q_{i0}
\]

\[
\beta_{i0} = \frac{\varepsilon_{i0} Q_{i0}}{PP_{i0}}
\]

\[
\gamma_{i0} = (1 - \eta_{i0}) C_{i0}
\]

\[
\delta_{i0} = \frac{\eta_{i0} C_{i0}}{PC_{i0}}
\]
en donde: \(Q_{i0} \) es la cantidad producida en cada región
\(C_{i0} \) es la cantidad consumida en cada región
\(PP_{i0} \) es el precio al productor en la i-ésima región
\(PC_{i0} \) es el precio al consumidor en la i-ésima región
\(\varepsilon_{i0} \) es la elasticidad precio de la oferta en la i-ésima región
\(\eta_{i0} \) es la elasticidad precio de la demanda en la región (- \(\eta_{i0} < 0 \)).

Parametrización del crecimiento de la oferta y de la demanda

Independientemente de que se lleve a cabo o no el programa de investigación, la oferta crece debido al crecimiento en la productividad y/o al aumento de la superficie sembrada, y la demanda también crece a consecuencia del crecimiento poblacional y de los aumentos en el ingreso personal.

\[
\alpha_{it} = \alpha_{i,t-1} + \pi^Q_i Q_{it} , \quad \text{para} \ t > 0; \\
\gamma_{it} = \gamma_{i,t-1} + \pi^C_i C_{it} , \quad \text{para} \ t > 0;
\]

en donde: \(\pi^Q_i = n + g \), es la tasa de crecimiento de la oferta; ésta, a su vez, es igual a la suma de la tasa de crecimiento de la población y de la productividad total de los factores.

El equilibrio del mercado

Una condición para que el mercado de bienes y de factores productivos se equilibre. En este esquema de equilibrio parcial también se requiere que el mercado del bien en cuestión se equilibre:

\[
\sum_{i=1}^{n} Q_{it} - \sum_{i=1}^{n} C_{it} = 0
\]

Parametrización del desplazamiento de la oferta inducido por la investigación

Una hipótesis esencial del modelo es que si la región \(i \) lleva a cabo un programa de investigación agrícola específico, el cual tiene una probabilidad de éxito de \(p_i > 0 \), y si la nueva técnica fuera plenamente adoptada al nivel de \(A^{MAX} \), entonces se reduciría el costo de producir una unidad del bien en \(c_i \) % con respecto al precio inicial: \(PP_{i0} \), en la región \(i \). El correspondiente desplazamiento de la curva de oferta, medido en términos del precio, es positivo e igual a:

\[
k^{MAX}_i = p_i c_i A^{MAX} PP_{i0}
\]
El desplazamiento real de la curva de oferta en un año específico es, sin embargo, una fracción del desplazamiento potencial máximo, k_i^{MAX}. Con el fin de definir ese desplazamiento real se asumirá un esquema logístico o sigmoidal de adopción de la técnica de producción correspondiente.

De acuerdo con González Estrada (1992), la solución general de la ecuación diferencial correspondiente es una familia tríparamétrica de curvas sigmoidales. En consecuencia, la solución específica se obtiene después de definir los tres parámetros de tal familia: α, β y A^{MAX}.

Existen distintos procedimientos para obtener esos tres parámetros. Uno, sugerido por Alston, Norton y Pardey (1995), consiste en descubrir dos puntos de la curva sigmoidal. El primero, que indique el año en que el nivel de adopción alcanzó el 1%, y el segundo, cualquier otra observación posterior del nivel de adopción y del año en que ocurrió. Se debe definir en cuántos años después de que se liberó la nueva técnica se alcanzará el 50% de adopción; es decir, el $0.5A^{MAX}$. Después de sacar logaritmos a la curva logística, se obtiene la siguiente expresión para β:

$$\beta = \ln \left[\frac{A_i}{A_i^{MAX}} \right] \cdot \frac{1}{t};$$

una vez sustituidos en esta expresión los valores de A^{MAX} y de las dos observaciones de A_i, será posible obtener los valores de α y β.

9.8. Comercio Internacional Libre

En el caso de los productos que, sin protección alguna, participan en el comercio exterior, los precios de mercado previos a la introducción de la técnica generada por la investigación y los que surgen después de ella son, respectivamente, los siguientes:

$$PP_{it} = PC_{it}, \quad P = PC_{jt},$$
$$PP^R_{it} = PC^R_{it}, \quad P^R = PC^R_{jt} = PP^R_{jt}.$$

La condición de que los mercados se equilibren implica que las reglas para la agregación de las ofertas y demandas regionales se deben respetar:

$$\alpha_t = \sum_{i=1}^{n} \alpha_{it};$$
$$\alpha^R_t = \sum_{i=1}^{n} \alpha^R_{it};$$
\[\gamma_i = \sum_{i=1}^{n} \gamma_{ir} ; \]
\[\beta_i = \sum_{i=1}^{n} \beta_{i0} = \beta ; \]
\[\delta_i = \sum_{i=1}^{n} \delta_{i0} = \delta ; \]

En consecuencia, los precios de mercado bajo este régimen comercial son los siguientes:

\[P_t = \frac{\gamma_t - \alpha_t}{\beta - \delta}, \]
\[P_{rt} = \frac{\gamma_t - \alpha_{rt}}{\beta - \delta}, \]

los cuales representan el precio de equilibrio antes y después de la introducción de la innovación tecnológica, respectivamente.

9.9. Comercio internacional con impuestos y subsidios
Aquí se estudiará el caso de los productos que, con la protección de impuestos y subsidios, participan en el comercio exterior.

Si se representa el impuesto unitario al consumo como: \(T_i^c \), y al impuesto unitario al productor en la región i-ésima como: \(T_i^p \), entonces las diferentes políticas comerciales pueden representarse a través de una combinación específica de impuestos y tarifas, como se indica a continuación:

\(T_i^c = T_i \); \(T_i^p = 0 \); ~ impuesto unitario al consumo en la región i
\(T_i^c = T_i \); \(T_i^p = T_i \); ~ impuesto unitario a la producción, región i
\(T_i^c = -T_i \); \(T_i^p = T_i \); ~ impuesto unitario al consumo en la región i
\(T_i = T_i \); \(T_i = -T_i \); ~ tarifa \textit{ad valorem} en la región i
La exigencia de equilibrio general de que no exista arbitraje de precios, en el presente caso significa que los precios deben obedecer las siguientes condiciones válidas para todo \(i, j, t \):

\[
P_{it}^P = P_i - T_t^Q; \quad PC_{it} = P_i - T_t^C; \quad PP_{it}^R = P_i^R - T_t^Q; \quad PC_{it}^R = P_i^R - T_t^C;
\]

Al igual que en el caso de comercio internacional sin tarifas ni protección, se requiere de los siguientes parámetros de agregación:

\[
\alpha_i = \sum_{i=1}^{n} \alpha_{it}; \quad \alpha_i^R = \sum_{i=1}^{n} \alpha_{it}^R;
\]

\[
\gamma_i = \sum_{i=1}^{n} \gamma_{it}; \quad \beta_i = \sum_{i=1}^{n} \beta_{it} = \beta;
\]

\[
\delta_i = \sum_{i=1}^{n} \delta_{it} = \delta.
\]

Los desplazamientos de las funciones de oferta y demanda que surgen de los impuestos a los productores y a los consumidores se expresan de la siguiente manera:

\[
T_t^C = \sum_{i=1}^{n} \delta_{it} T_{it}^C
\]

\[
T_t^Q = \sum_{i=1}^{n} \beta_{it} T_{it}^Q
\]

\[
P_i = \langle \gamma_i + T_{it}^Q + T_{it}^C - \alpha_i \rangle / (\beta + \delta); \quad P_i^R = \langle \gamma_i + T_{it}^Q + T_{it}^C - \alpha_i^R \rangle / (\beta + \delta).
\]

Nótese que el supuesto de comercio internacional libre es un caso especial de este escenario, en el que las tarifas y restricciones no arancelarias son nulas.
9.10. El caso de un país pequeño
Con el fin de introducir esta especificación en el modelo general, se debe definir el precio de equilibrio del mercado, al que se igualan la oferta y la demanda, de manera exógena, como un parámetro:

\[P_i = P^R_i = \bar{P}_i \]

Se requerirá de la especificación de una tasa exógena de crecimiento para definir la secuencia del precio mundial que empiece en el periodo cero.

9.11. Calibración de los impactos sobre el bienestar
En la mayor parte de los posibles escenarios de política, el análisis de los impactos de la investigación en el bienestar de la sociedad se rige por la siguiente estructura paramétrica:

\[\Delta TS_{jt} = \Delta PS_{jt} + \Delta CS_{jt} + \Delta GS_{jt} \]

\[\Delta PS_{jt} = \left(k_{jt} + PP^R_{jt} - PP_{jt} \right) \left[Q_{jt} + 0.5 \left(Q^R_{jt} - Q_{jt} \right) \right] \]

\[\Delta CS_{jt} = \left(PC_{jt} - PC^R_{jt} \right) \left[C_{jt} + 0.5 \left(C^R_{jt} - C_{jt} \right) \right] \]

\[\Delta GS_{jt} = T_{jt}^C \left(C^R_{jt} - C_{jt} \right) + T_{jt}^Q \left[Q^R_{jt} - Q_{jt} \right] \]

9.12. Agregación intertemporal de los excedentes económicos
El último problema por resolver es el de la agregación intertemporal de las distintas clases de excedentes económicos inducidos por la investigación.

Alston, Norton y Pardey (1995), sugieren un horizonte temporal para la evaluación de los beneficios de la investigación de treinta años y una tasa única de descuento. En las evaluaciones aquí presentadas, la determinación del horizonte de planeación, T, es variable y se determinó casuísticamente, de tal manera que el valor presente de la secuencia temporal de los beneficios económicos generados en la región i quedaría especificado de la siguiente manera:

\[VPS_i = \sum_{t=0}^{T} \frac{1}{\left(1+r\right)^t} \Delta PS_{jt} \]

\[VCS_i = \sum_{t=0}^{T} \frac{1}{\left(1+r\right)^t} \Delta CS_{jt} \]

\[VGS_i = \sum_{t=0}^{T} \frac{1}{\left(1+r\right)^t} \Delta GS_{jt} \]

\[VTS_i = \sum_{t=0}^{T} \frac{1}{\left(1+r\right)^t} \Delta PS_{jt} + \sum_{t=0}^{T} \frac{1}{\left(1+r\right)^t} \Delta CS_{jt} + \sum_{t=0}^{T} \frac{1}{\left(1+r\right)^t} \Delta GS_{jt} \]
El mismo procedimiento de agregación se debe seguir para obtener el valor del excedente total inducido por la investigación en todas las regiones, y en todos sus proyectos. Por ejemplo, para un cultivo determinado,

\[VTS = \sum_{t=1}^{n} \sum_{i=0}^{r} \frac{1}{(1+r)^{t}} \Delta PS_{i} + \sum_{t=1}^{n} \sum_{i=0}^{r} \frac{1}{(1+r)^{t}} \Delta CS_{i} + \sum_{t=1}^{n} \sum_{i=0}^{r} \frac{1}{(1+r)^{t}} \Delta GS_{i} \]

9.13. Agregación intertemporal de los costos de investigación y transferencia

Para cuantificar los costos de investigación y de transferencia, se trabajó conjuntamente con los investigadores que generaron el logro tecnológico bajo estudio y con el economista del INIFAP asignado a la región a la que corresponde el logro. Conjuntamente, se calculó el flujo corriente de costos de las actividades de investigación para cada logro, así como los impactos del logro tecnológico sobre los costos de producción y sobre las ganancias unitarias por ha o por cualquier otra unidad de referencia, según el caso.

El procedimiento para agregar el flujo actualizado de costos o valor actualizado de costos, VAC, en investigación y transferencia, es análogo al procedimiento de la sección previa:

\[VAC = \sum_{t=1}^{n} \sum_{r=0}^{r} \frac{1}{(1+r)^{t}} \langle CI \rangle_{i} + \sum_{t=1}^{n} \sum_{r=0}^{r} \frac{1}{(1+r)^{t}} \langle CTR \rangle_{i} \]

en donde \(CI \) y \(CTR \), simbolizan, respectivamente, el costo en inversión y el costo por concepto de transferencia en el año \(t \).

El cálculo de los indicadores evaluativos se basó en los resultados obtenidos mediante el paquete computacional DREAM 3.2 desarrollado por Wood y Baitx (1999).
9.15. Referencias bibliográficas

Para mayores informes, acuda, escriba o llame al
Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias

Serapio Rendón No. 83
Col. San Rafael Delegación Cuauhtémoc
C.P. 06470 México D.F.
Tel. Com. 51-40-16-00

http://www.inifap.gob.mx