PRIMER ENCUENTRO CIENTIFICO-TECNOLÓGICO DEL CULTIVO DE AVENA

SECRETARIA DE AGRICULTURA Y RECURSOS HIDRAULICOS
INSTITUTO NACIONAL DE INVESTIGACIONES FORESTALES Y AGROPECUARIAS
CENTRO DE INVESTIGACIONES FORESTALES Y AGROPECUARIAS DEL ESTADO DE CHIHUAHUA
CAMPO EXPERIMENTAL "SIERRA DE CHIHUAHUA"
Cd. Cuauhtémoc, Chih. México

Publicación Especial 1 Febrero 1989
PRIMER ENCUENTRO CIENTÍFICO DEL CULTIVO DE AVENA 1989

Reunión de trabajo organizada por:

INSTITUTO NACIONAL DE INVESTIGACIONES FORESTALES
Y AGROPECUARIAS,

ASOCIACIÓN DE PRODUCTORES DE AVENA "SIERRA DE
CHIHUAHUA"

INSTITUTO TECNOLÓGICO AGROPECUARIO No. 24

Celebrado el 22 y 23 de Septiembre de 1988

Cd. Cuauhtémoc, Chihuahua, México.

PUBLICACIÓN ESPECIAL No. 1

ENERO 1989
SECRETARIA DE AGRICULTURA Y RECURSOS HIDRAULICOS

Lic. Jorge de la Vega Domínguez
SECRETARIO
Dr. Gustavo Gordillo de Anda
SUBSECRETARIO DE POLÍTICA Y CONCERTACIÓN
Ing. Sergio Reyes Osorio
SUBSECRETARIO DE AGRICULTURA
Lic. Ernesto Enríquez Rubio
SUBSECRETARIO DE GANADERÍA
Lic. Rafael Hernández Ochoa
SUBSECRETARIO FORESTAL

INSTITUTO NACIONAL DE INVESTIGACIONES FORESTALES Y AGROPECUARIAS

Dr. Manuel Villa Issa
VOCAL EJECUTIVO
Dr. Miguel Caballero Deloya
VOCAL SECRETARIO ZONA NORTE

CENTRO DE INVESTIGACIONES FORESTALES Y AGROPECUARIAS
DEL ESTADO DE CHIHUAHUA

Dr. Enrique Sánchez Granillo
DIRECTOR ESTATAL
M.C. Antonio H. Chávez Silva
SUBDIRECTOR DE INVESTIGACIÓN

CAMPO EXPERIMENTAL "SIERRA DE CHIHUAHUA"

M.C. Sergio Ramírez Vega
COORDINADOR REGIONAL
Ing. Enrique Díaz Solís
JEFE DE OPERACIÓN
<table>
<thead>
<tr>
<th>Contenido</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREFACIO</td>
<td>1</td>
</tr>
<tr>
<td>DIAGNOSTICO DEL CULTIVO DE AVENA EN LA SIERRA DE CHIHUAHUA</td>
<td>2</td>
</tr>
<tr>
<td>ANTECEDENTES Y EVALUACION DEL PROGRAMA NACIONAL DE MEJORAMIENTO GENETICO DE AVENA</td>
<td>5</td>
</tr>
<tr>
<td>CONTRIBUCIONES AL MEJORAMIENTO DEL CULTIVO DE AVENA</td>
<td>9</td>
</tr>
<tr>
<td>CINCO NUEVAS VARIEDADES DE AVENA PARA LA SIERRA DE CHIHUAHUA</td>
<td>14</td>
</tr>
<tr>
<td>MEJORAMIENTO GENETICO DE LA AVENA</td>
<td>21</td>
</tr>
<tr>
<td>DESCRIPCION DE ALGUNOS COMPONENTES TECNOLOGICOS DEL CULTIVO DE AVENA</td>
<td>31</td>
</tr>
<tr>
<td>EL CULTIVO DE AVENA COMPONENTE ESTRUCTURAL DEL SISTEMA TEMPORAL EN LA BAJA BABICORA</td>
<td>39</td>
</tr>
<tr>
<td>CARACTERISTICAS DISEABLES PARA ELABORAR HOJUELAS DE AVENA</td>
<td>51</td>
</tr>
</tbody>
</table>
PREFACIO

Tradicionalmente el Programa de Mejoramiento Genético de Avena del CESICH, ha recibido la visita anual de científicos altamente calificados de México y el extranjero por más de dos décadas, destacando la visita del Dr. Deon D. Stuthman de la Universidad de Minnesota y el Dr. Uriel Maldonado Amaya de INIFAP. Con objeto de aprovechar las experiencias e intensificar los conocimientos se llevó a cabo el Primer Encuentro de especialistas y personal interesado en el cultivo; con la iniciativa del Campo Experimental “Sierra de Chihuahua” y el apoyo del Instituto Tecnológico Agropecuario No. 24 y la Asociación de Productores de Avena "Sierra de Chihuahua”.

Los resultados obtenidos han sido valiosos para el avance tecnológico de este cereal a nivel regional y nacional, sobre todo por la entrega de cinco nuevas variedades de avena generadas por el Campo Experimental “Sierra de Chihuahua” dependiente del Instituto Nacional de Investigaciones Forestales y Agropecuarias.

De los trabajos presentados durante el evento, sobresale lo siguiente: El papel que juega el cultivo como parte del sistema de temporal en Chihuahua; los enfoques y metodología que deben ser considerados en la obtención de variedades mejoradas; las características o especificaciones que deben considerarse en la venta de grano a las compañías industrializadoras, lo que repercute en estímulos o castigos a los precios del grano; la descripción de un destacado productor de avena, el Sr. Antonio Comadurán Córdoba con el planteamiento de la problemática que guarda el cultivo.

Finalmente agradecemos a Investigadores, Maestros, Estudiantes, Secretarias y Personal de apoyo por su valiosa ayuda en la realización de este evento.

Sergio Ramírez Vega
Editor y Coordinador Regional del CESICH
DIAGNÓSTICO DEL CULTIVO DE AVENA EN LA "SIERRA DE CHIHUAHUA"

Antonio Comadurán Córdoba*

INTRODUCCIÓN.

En la región agrícola de la "Sierra de Chihuahua" la producción de avena se realiza principalmente en los municipios de Cuauhtémoc, Guerrero, Cusihuiriachi, Riva Palacio y Bachíniva; la superficie sembrada anualmente varía de 200,000 a 250,000 ha, de las cuales del 50 al 60% se destinan a la producción de grano y el resto a la producción de forraje; en algunos años cuando las lluvias se retardan (segunda quincena de julio) la superficie antes mencionada puede aumentar hasta 100,000 hectáreas aproximadamente, debido a las restricciones en siembra de maíz y frijol por falta de humedad.

La cosecha tiene como finalidad la producción de forraje y de manera secundaria la producción de grano, 15% de la producción la industria (elaboración de hojuelas) y 5% para los requerimientos de semilla para siembra. En los otros estados de la República su uso es eminentemente forrajero ya que se utiliza para la elaboración de alimentos concentrados para ganado fino. El cultivo de avena como fuente de forraje regional representa la base de la dieta del ganado lechero semiestabulado en los Campos Menonitas y granjas de la región, sobre todo en la época de estiaje.

PROBLEMÁTICA.

Variedades.- Las variedades utilizadas regionalmente son: Cuauhtémoc y Chihuahua para forraje; Guelatao y Páramo para grano, estas últimas con producciones

*Productor Agropecuario de Cd. Guerrero, Chih.
de 1,250 a 1,500 kg/ha, dado que estas variedades año con año son más suscep-
tibles al ataque de la roya sus producciones de grano se reducen entre un 30 y
50% y el forraje no es apetecido por el ganado.

Semilla para siembra.- Uno de los problemas más serios en las siembras de ave-
na es la adquisición de semilla de buena calidad, ya que la mayorfa de semilla
utilizada está infestado con semilla de maleza de otras especies diferentes a
la avena. Por lo anterior es urgente establecer un programa intensivo de pro-
ducción de semillas puras y de calidad.

Otro de los problemas observados es la falta de reposo de la semilla que
se produce en las áreas de riego de Nuevo Casas Grandes y Delicias en primave-
ra y que es utilizada en siembras de verano en la región temporalera, provocan-
do una falta de uniformidad en la emergencia y la producción de plantas débi-
les, falta pues información sobre la germinación de la semilla para que la
siembra sea más segura y eficaz.

Densidad de siembra.- Por lo general los agricultores utilizan 80 kg de semi-
lla por hectárea para realizar la siembra, por lo que la densidad de plantas
varía de acuerdo a la variedad usada y al % de germinación, por esta razón se
necesita definir el número de granos por kilogramo de las variedades a sembrar
y así poder calcular la cantidad de semilla a utilizar en las siembras.

Incidencia de maleza.- Debido a que la avena es un cultivo de cobertura total,
etl control de maleza es realizado de manera mecánica con un rastreo antes de la
siembra, esto no parece suficiente ya que tiene que realizarse una aplicación
de herbicida antes del amacolde, sin embargo, persisten infestaciones serias
con maleza como mostacilla, coquillo y zacate de agua; es necesario investigar
cómo controlar dicha maleza. También se observa que la falta de información
del productor en el manejo de los herbicidas en ocasiones provoca quemaduras y
enrollamiento de las hojas, por lo anterior se requieren recomendaciones más
específicas que no perjudiquen al cultivo.

Fertilización. - La fertilización se realiza al momento de la siembra y se utilizan los productos comerciales 18-46-0 y Urea en una proporción de dos a uno para la producción de grano y de uno a uno para forraje, empleando 80 kg/ha de esta mezcla, se tiene la experiencia de que al usar otras mezclas con más nitrógeno, éste alarga el ciclo vegetativo del cultivo. Es necesario obtener información de fertilización para equilibrar la madurez de la avena; así como la mejor oportunidad de aplicación.

Calidad de forraje. - Es necesario dar a conocer las propiedades nutritivas de la avena como forraje ya que es muy probable que por esta causa el consumo de la alfalfa cada día esté desplazando a la avena.

Cosecha. - El problema de la cosecha se deja sentir únicamente con los productores en pequeña escala ya que éstos no poseen maquinaria como cosechadoras y su alquiler siempre es elevado.

Comercialización. - Dado que el mercado de la avena es libre, el precio de la avena fluctúa de acuerdo a la oferta y demanda de la región, sería deseable un precio de garantía o referencial.

Crédito. - Restringido por considerar que el cultivo no es remunerativo y de alto riesgo, excluyéndolo de los programas de aseguramiento, por lo anterior deberá reconsiderarse esta situación ya que es la opción más segura en temporal.

GENERACIÓN DE TECNOLOGÍA.

Dada la importancia que reviste la producción de avena para satisfacer las necesidades tanto regionales como nacionales, es necesario y urgente intensificar los trabajos coordinados entre las Instituciones de Investigación y la Asociación de Productores de Avena, con el propósito de generar tecnología eficiente en la producción de este cereal.
Los productores desearíamos que el orden de prioridades en la solución de problemas fueran las siguientes:

- Producción de variedades de doble propósito resistentes a la roya del tallo y hoja con un ciclo vegetativo que se ajuste a los 90 y 100 días del período de crecimiento para evitar daño por heladas.

- Combate de malezas. Estudiar productos dosis y época adecuados para tener mayor control y que no causen daño al cultivo.

- Una eficiente producción de semillas mejoradas que refleje una alta calidad de este insumo, así como poner atención a las "semillas frescas" que se producen en la primavera.

- Capacitar a los productores para que ellos mismos produzcan y conserven sus propias semillas.

- Estudiar la densidad de siembra de acuerdo a las diferentes variedades disponibles.

- Uso adecuado de los fertilizantes para incrementar la producción y equilibrar la madurez del cultivo.

- Difusión de las bondades nutritivas de la avena.

- Difusión de la tecnología generada por el CESICH.

- Establecer un precio de garantía adecuado al cultivo de la avena.
ANTECEDENTES Y EVALUACIÓN DEL PROGRAMA NACIONAL DE MEJORAMIENTO GENÉTICO DE AVENA.

Dr. Uriel Maldonado Amaya*

El Programa de Mejoramiento genético de avena se inició en el año de 1959. Siguiendo al Dr. Ignacio Narváez Morales y al Sr. Dallas Western de la Compañía Quaker los motivadores principales en la obtención de mejores variedades de avena, tanto de prono como de su fenotipo en general.

Se estudió inicialmente a las variedades nativas, siendo éstas una verdadera mezcla de líneas puras procedentes de una misma variedad denominada Burt, Texas o Texas Red, esta variedad fue introducida al estado de Chihuahua en el año de 1922 con la llegada del grupo Mennonita a la zona del Noroeste.

Posteriormente se procedió a la introducción de variedades comerciales ya establecidas en los diferentes países, donde se cultiva este cereal. Se evaluaron variedades de Canadá, Australia, Argentina, Estados Unidos, Chile, Islandia, Rusia y Francia entre otros.

Las variedades que mejor y mayor adaptación mostraron a las condiciones ecológicas de esta región fueron las de los Estados Unidos de Norte América, entre ellas se pueden mencionar las siguientes AB-110, AB-177, Newton, Clintland 60, Rodney, Putnam 61, Nodaway y Landhafer.

Del grupo anterior fueron seleccionadas y sembradas por los productores de la zona de Cuauhtémoc, Chih., las variedades Nodaway, Putnam 61, AB-177 y Newton. Importándose aproximadamente 40 toneladas de semilla de cada una de ellas. A través de la Compañía Quaker de México.

*Investigador del Programa de Cereales del CIFAP-Chihuahua.
Estas variedades no necesariamente se ajustaban al ciclo vegetativo de la zona avenera del Estado. De ahí que se procedió a seleccionar plantas precoces dentro de cada una de las poblaciones de las diferentes variedades, obteniéndose así otro grupo de variedades de líneas puras. Estas variedades fueron: Opaio, CI-7358, CI-7359, Nodaway, Putnam 61 y AB-177. Se utilizaron en siembras comerciales por un considerable número de años.

Durante este mismo período se inicia la hibridación de los materiales seleccionados y mediante el método de pedigrees se obtiene otro grupo de variedades que sustituye al anterior siendo éstas las siguientes: En 1967 Cuauhtémoc y Chihuahua; 1972 Guelatao; 1975 Páramo y Tarahumara; 1980 Protavena; 1988 Cusihuiriachi, Papíochochi, Babícora, Pampas y Rarámuri. Cada vez se ha venido mejorando la calidad y cantidad de grano, así como la precocidad que quizá es la característica más importante para siembras de temporal en la zona Noroeste del estado de Chihuahua.

Con la utilización de la variedad CURT en el programa de cruzas, se introdujo bastante precocidad al vivero en general, de donde se derivó la mayoría de las variedades actuales incluyendo a la variedad Páramo que es la que ha ocupado el mayor porcentaje de siembras comerciales durante la última década.

La utilización de la variedad CI-3034 a la fecha ha sido la mejor fuente de resistencia a la roya del tallo o chahuixtle, una de las enfermedades más devastadoras del cultivo.

CI-3034 ha sido factor importantísimo por sus genes de resistencia a la raza fisiológica del hongo 6 AF ó 31, raza fisiológica que por su patogenicidad ataca a la mayoría de las variedades comerciales de avena del mundo.

Las variedades nuevas del Programa Mexicano de Avena poseen genes de resistencia a la roya del tallo de la variedad CI-3034. Utilizando una modificación
al método de pedigree (donde se aplica la mayor presión de selección al peso del grano), se ha obtenido otro grupo de variedades para liberarse, siendo las siguientes: Pacigochi, Pampas y Babfcora.

El método de pedigree sigue utilizándose y nuevamente se han obtenido dos variedades que serán también liberadas en fecha próxima, son las siguientes: Rarámuri y Cusihuiriachi.

Detalles de rendimiento, características físicas y químicas del grano, así como reacciones a las enfermedades más comunes del cultivo, con seguridad mis colegas ampliarán la información respecto a estas variedades durante el desarrollo de estas pláticas.

En resumen se ha utilizado en el establecimiento del Programa de Avena la siguiente secuencia en metodología:

1. Estudio de variedades nativas.
2. Utilización de variedades de introducción.
3. Variedades procedentes de líneas puras.
4. Variedades procedentes de hibridación.

- Método de pedigree.
- Método de cruzas regresivas.
- Método de selección masal.
- Método de selección masal gravimétrico.
CONTRIBUCIONES AL MEJORAMIENTO DEL CULTIVO DE AVENA

Philip Dyck Sudermann*

INTRODUCCION.

Los españoles introdujeron este cultivo a México, sin embargo, fue hasta 1922 con la llegada de los inmigrantes Menonitas procedentes del Canadá cuando se inició su siembra comercial, convirtiéndose en un cultivo elemental del sistema de temporal en Chihuahua; sembrándose en promedio 200,000 hectáreas anualmente, es decir, un 76% de la superficie sembrada en México.

Se cosechan regionalmente 80,000 toneladas anuales de grano (1,121 kg/ha) y 400,000 toneladas de forraje (3,364 kg/ha); el destino de la producción de grano y forraje fue mencionada anteriormente.

A partir de la introducción de este cultivo se han utilizado procedimientos de mejoramiento genético desde métodos sencillos de selección hasta cruzamiento de aquellas plantas con excelentes características.

Este documento describe los resultados para obtener avena de alta calidad en grano para consumo humano y forraje para alimentación pecuaria.

CONDICIONES AMBIENTALES COMO LIMITANTES DE LA PRODUCCION.

Las principales condiciones ambientales que limitan la producción son las siguientes:

A). Período de crecimiento.

El cultivo se establece por lo general la segunda quincena de julio cuando se inicia el temporal como se muestra en el Cuadro 1, antes de esta fecha por lo

*Investigador del Programa de Cereales del CESICH-CIFAP, Chihuahua.
general no hay suficiente humedad en el suelo para realizar la siembra. Además se observa que la presencia de heladas tienen la tendencia a presentarse la primer cuincena de octubre.

En general se puede citar que aunque el período de crecimiento es variable (de 77 a 108 días) el cultivo tiene que adecuarse a un ciclo de tres meses para producir cosecha, por lo anterior, la obtención de nuevas variedades deben tener como característica básica una precocidad alrededor de 90 días.

8). Aportaciones y requerimientos de lluvia.

El análisis de 37 años de precipitación pluvial en la región indica que dos de cada diez años ésta es menor de 261 mm durante el ciclo de cultivo; seis de diez años tiene un ranque de 261 a 446 mm y dos de cada diez mayor a 446 mm. El Cuadro 2 muestra que los requerimientos de agua por avena es de 400 mm, sin embargo, las aportaciones de lluvia son deficitarias. También se observa que la mayor cantidad que se aporta al cultivo es durante el mes de julio (154 mm) reduciéndose conforme avanza el ciclo, otro de los aspectos evidentes es la irregularidad en cantidad y oportunidad de la lluvia; por lo anterior, otro de los criterios en la formación de variedades es la resistencia y/o tolerancia a la escasez de agua.

C). Enfermedades.

La resistencia a enfermedades son consideradas en el proceso de selección especialmente a Roya de tallo o Chahuixtle Puccinia graminis avenae la cual ataca al cultivo en condiciones de alta humedad y temperatura.

En el Cuadro 3 se ejemplifica la susceptibilidad de la variedad Páramo, variedad comercial ampliamente sembrada en la región (170,000 ha) en comparación con la nueva variedad Rarámuri la cual tiene mayor tolerancia a dicha enfermedad, lo anterior significa que dicha variedad susceptible debe omitirse en su uso debido a las grandes pérdidas que actualmente ocasiona a los productores.
CUADRO 1. LLUVIA Y TEMPERATURA COMO LIMITANTES DE PRODUCCION.

<table>
<thead>
<tr>
<th>AÑO</th>
<th>INICIO DE LLUVIAS</th>
<th>DÍA HELADA</th>
<th>PERIODO CRECIMIENTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1965</td>
<td>18 de julio</td>
<td>3 de octubre</td>
<td>77</td>
</tr>
<tr>
<td>1970</td>
<td>27 de julio</td>
<td>5 de octubre</td>
<td>70</td>
</tr>
<tr>
<td>1976</td>
<td>13 de julio</td>
<td>9 de octubre</td>
<td>88</td>
</tr>
<tr>
<td>1978</td>
<td>25 de julio</td>
<td>10 de noviembre</td>
<td>108</td>
</tr>
<tr>
<td>1980</td>
<td>17 de agosto</td>
<td>29 de octubre</td>
<td>56</td>
</tr>
</tbody>
</table>

Tendencia 2a. de julio Ta. de octubre 92

CUADRO 2. APORTACIONES Y REQUERIMIENTOS DE LLUVIA EN EL CICLO DE AVENA (MM)

<table>
<thead>
<tr>
<th>AÑO</th>
<th>JULIO</th>
<th>AGOSTO</th>
<th>SEPTIEMBRE</th>
<th>OCTUBRE</th>
<th>TOTAL</th>
<th>NECESIDAD</th>
<th>DIFERENCIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1968</td>
<td>243</td>
<td>178</td>
<td>59</td>
<td>32</td>
<td>512</td>
<td>400</td>
<td>+ 112</td>
</tr>
<tr>
<td>1969</td>
<td>157</td>
<td>34</td>
<td>14</td>
<td>17</td>
<td>222</td>
<td>400</td>
<td>- 178</td>
</tr>
<tr>
<td>1976</td>
<td>156</td>
<td>61</td>
<td>146</td>
<td>6</td>
<td>359</td>
<td>400</td>
<td>- 41</td>
</tr>
<tr>
<td>1985</td>
<td>60</td>
<td>45</td>
<td>105</td>
<td>30</td>
<td>240</td>
<td>400</td>
<td>- 160</td>
</tr>
<tr>
<td></td>
<td>154</td>
<td>79</td>
<td>81</td>
<td>21</td>
<td>333</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Por lo anterior se incorporan fuentes de resistencia genética a todas las variedades que libera el Campo Experimental "Sierra de Chihuahua".

OTROS PROBLEMAS.

Algunas deficiencias agronómicas del cultivo a las cuales se les pone énfasis son acame y desgranar, las cuales afectan el rendimiento, para corregirlas se incorporan características de resistencia.

<table>
<thead>
<tr>
<th>VARIEDAD</th>
<th>AÑO</th>
<th>RENDIMIENTO KG/HA</th>
<th>REACCIÓN AL CHAHUIXTEL (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raramuri</td>
<td>1985</td>
<td>2,139</td>
<td>15 MS</td>
</tr>
<tr>
<td></td>
<td>1986</td>
<td>2,451</td>
<td>29 MS</td>
</tr>
<tr>
<td></td>
<td>1987</td>
<td>2,193</td>
<td>5 MS</td>
</tr>
<tr>
<td>Páramo</td>
<td>1985</td>
<td>1,882</td>
<td>40 S</td>
</tr>
<tr>
<td></td>
<td>1986</td>
<td>1,372</td>
<td>50 S</td>
</tr>
<tr>
<td></td>
<td>1987</td>
<td>2,002</td>
<td>39 S</td>
</tr>
</tbody>
</table>

Susceptible = S Moderadamente = M

Variedades mejoradas.

1. Inicio del cultivo de la avena (1922-1940). Como antecedente se puede mencionar que en 1922 fue introducida la variedad Gold procedente del Canadá, la cual se comportó tardía para las condiciones del temporal de Chihuahua. Por lo anterior se buscó una variedad cuyas características fueran alto rendimiento, ciclo vegetativo adecuado y buena producción de forraje, encontrando la variedad Burt en el estado de Texas la cual se adaptó a sus necesidades.

Para encontrar el grano adecuado, dicha compañía y el Comité Central Meno- nita establecieron parcelas de observación con variedades extranjeras seleccionando a Newton y Clintland, las cuales resultaron ser superiores a Burt (Texas), procediendo a incrementar la semilla y entregarla a los productores.
3. Variedades generadas por INIFAP (1961-1988). Debido a la falta de aceptación de las anteriores variedades por los agricultores regionales, a partir de 1967 el extinto Instituto Nacional de Investigaciones Agrícolas (INIA) hoy INIFAP; inició la obtención de mejores variedades de avena. Inicialmente, se volvió a recurrir a la introducción de germoplasma extranjero detectando tres nuevas variedades procedentes de Estados Unidos: AB-110, AB-177 y Nodaway.

Para 1967 se realizaron regionalmente cruzamientos y selecciones, obteniendo las variedades Cuauhtémoc y Chihuahua; sin embargo, éstas fueron demasiado tardías a las condiciones ambientales.

Por lo anterior se seleccionaron líneas procedentes de cruzas hechas en variedades americanas de las cuales se obtuvieron las variedades precoces Guelatao, Páramo y Tarahumara. Por ejemplo la variedad Guelatao es una selección de la cruzas Curt-Nodaway; Páramo que desde 1980 es la variedad comercial más importante, fue seleccionada de la cruzas AB 1772 - Curt × Curt-Nodaway2 - AB 1772.

A partir de 1975 además de las características ya mencionadas que deben tener las variedades de avena desarrolladas en México se incluye mayor porcentaje de grano descascarado y alto contenido en proteína, resultado de este enfoque se obtuvieron las variedades Babícora, Raramuri y Papigochi.

Finalmente las variedades que se obtengan en un futuro deberán tener como características buen rendimiento de grano y forraje, resistencia del tallo a la roya y al acame, el grano con menor cáscara, más grande y con mayor cantidad de proteína debiéndose considerar además el contenido de aceite en grano y proteína del forraje.
INTRODUCCION.

En la región de la Sierra de Chihuahua se produce el 76% de la avena que produce el país; dentro del patrón de cultivos regionales ocupa el tercer lugar por la superficie sembrada después de maíz y frijol. El área sembrada varía de 140,000 a 200,000 hectáreas anualmente, dependiendo de la humedad disponible para la siembra de maíz y frijol. De esta manera, si la humedad del invierno es adecuada y se inicia temprano el temporal (mayo - junio), la superficie de maíz y frijol se incrementan y la avena se reduce. Por otro lado, si no hay humedad durante el invierno y el temporal se inicia tarde (julio) la superficie de avena se incrementa, ya que representa la última alternativa del agricultor para efectuar siembras en temporal.

PROBLEMÁTICA Y ALTERNATIVAS DE SOLUCIÓN.

Las principales limitantes agroecológicas son: un reducido período libre de heladas (92 días promedio), Roya del tallo y una escasa e irregular precipitación.

Para hacer un aprovechamiento más racional de las condiciones ambientales existentes, el Campo Experimental "Sierra de Chihuahua" ha generado cinco variedades: Papigochi, Babícora, Cusihuiriachi, Pampas y Rarámuri, las cuales representan un mayor potencial de rendimiento que las variedades sembradas actualmente, más tolerancia a las enfermedades y de ciclo corto lo cual ayuda a evitar

*Investigadores del Programa de Cereales, Campo Experimental "Sierra de Chihuahua", CIFAP, Chihuahua, INIFAP.
las heladas, a excepción de la variedad Papinochi que es diez días más tardía que las variedades precoces.

Descripción de las Nuevas Variedades.

Babícora.

Ciclo vegetativo. Florece de los 51 a los 56 días después de la siembra y madura fisiológicamente a los 88 días. Los tallos son fuertes y llegan a alcanzar una altura de 82 a 88 cm.

Características del grano. Cubierta color amarillo y el grano limpio de color amarillo crema. El grano principal tiene una barba larga con la porción inferior retorcida de color negro y la porción superior ligeramente doblada. El porcentaje de grano aprovechable es de 68% ó sea 9% superior a Páramo. El porcentaje de proteína del grano sin cáscara es del 20% (1.5% mayor que Páramo). El peso de 1000 granos es de 27 gramos siendo el mayor de las nuevas variedades. (Aprox. 37,000 semillas por kilogramo).

Producción de grano y forraje. El rendimiento de grano promedio en cinco evaluaciones en la región de la Baja Babícora es de 1,732 kg/ha. (30% superior a la variedad testigo Páramo). Mientras que en forraje seco se han alcanzado producciones de 3,864 kg/ha (41% superior a Páramo).
Resistencia a Roya. La reacción a Roya del Tallo es de resistente hasta un 35° de reacción moderadamente susceptible.

Cusinuiriachi.

Es una variedad proveniente del método genealógico o pedigree. Los progenitores involucrados en la cruz son: Cate/Hua "S"/Jim - Inca/Colli//TPC/Mhfl (7144/CNA/In-n) Jim/Inca. La cruz inicial fue realizada en Chapingo, Edo. de México en 1978. Las generaciones de la F1 a la F7 fueron sembradas alternativamente en el Valle de México y Celaya, Guanajuato. En el verano de 1982 se evaluó primeramente en Chihuahua y hasta 1986 se detectó como una variedad prominente.

Ciclo. Florea y madura al mismo tiempo que Páramo (de 45 a 50 días a floración y de 82 a madurez fisiológica).

Tallos. Su paja es de tallos delgados pero resistente al acame, llega a tener una altura de 82 cm (5 cm menos que Páramo).

Granos. El color de la cáscara que cubre el grano es de color amarillo claro. El grano es de color crema. El grano principal tiene una barba corta (3 a 4 mm) y recta, al trillarse permanece solo en la base de la gluma adherida al grano. El porcentaje de grano aprovechable es del 67%. El peso de 1000 granos es de 23 gramos (2º inferior a Páramo) aproximadamente 43,500 semillas por kilogramo. La proteína en el grano limpio es del 19%.

Rendimiento de grano. El rendimiento promedio de cuatro evaluaciones fue de 1.842 kg/ha superando a Páramo en un 39%.

Producción forrajé. Se ha obtenido un rendimiento de 3,091 kg/ha de materia seca (13% arriba de Páramo).
Resistencia a roya. En relación a la susceptibilidad a la roya del tallo es la variedad más resistente, puede llegar a presentarse desde una reacción resistente hasta un 20% de moderadamente susceptible.

Pampas.

Ciclo vegetativo. Pampas florece a los 54 días (tres días más tardía que Páramo) y madura a los 90 días después de la siembra.

Tallos. Sus tallos son fuertes con una altura de 66 cm.

Características del grano. La cubierta es de color amarillo obscuro, el grano amarillo claro. El grano principal tiene una barba ligeramente retorcida de color negro en la base y la porción superior casi recta. El porcentaje de grano aprovechable es del 64% (5% superior a Páramo). El peso de 1000 granos es de 26 gramos (38,500 semillas por kilogramo aproximadamente). El contenido de proteína en el grano es de 21%.

Rendimiento de grano y forraje. Tiene un rendimiento promedio en cinco evaluaciones de 1,561 kg/ha (18% superior a Páramo).

Producción de forraje. La producción de forraje es de 3,409 kg/ha de materia seca, es decir un 25% mayor que Páramo.

Resistencia a roya. La resistencia de esta variedad a la Roya del Tallo, puede llegar a tener hasta 25% de una reacción de moderada suscepti
bilidad.

Papigochi.

Ciclo vegetativo. Papigochi florece a los 61 días después de la siembra, aproximadamente diez días más tarde que Páramo, su madurez fisiológica es de 95 días después de la siembra. Es la más tardía de las nuevas variedades, recomendada para cuando se inicia temprano el temporal (inicios de julio).

Tallos. Sus tallos alcanzan una altura de 87 cm.

Características del grano. La cáscara del grano es amarillo obscuro, el grano limpio es de color amarillo crema. El grano principal tiene una barba larga, retorcida y de color negro en la base y ligeramente doblada de la parte superior. El porcentaje de grano aprovechable es del 63% y el peso de 1000 granos es de 27 gramos (37,500 semillas por kilogramo aproximadamente). La proteína del grano limpio es del 18%, similar a Páramo.

Rendimiento de grano y forraje. La variedad Papigochi tiene un rendimiento promedio de 1,788 kg/ha representando un 34% de incremento respecto a Páramo.

Producción forraj. En producción de pastura esta variedad es la más rendidora, llegando a producir una cantidad de 4,394 kg/ha de materia seca (61% superior a Páramo).
Resistencia a roya. En relación a resistencia a Roya del Tallo es de las más atacadas por este patógeno, llegando a cubrir un 35% de la planta con una reacción de moderada susceptibilidad.

Raramuri.

Ciclo. Raramuri florece y madura a los 52 días y 84 días respectivamente después de la siembra.

Tallos. Son fuertes y alcanzan una altura de 84 cm.

Grano. La cáscara es amarilla, el grano limpio es de color crema. El grano principal carece de barba. El porciento de grano aprovechable es del 67%, el peso de 1000 granos es de 24 gramos. El porciento de proteína del grano sin cáscara es del 21%.

Rendimiento de grano. El promedio de rendimiento de grano es de 1,470 kg/ha, representando un 11% superior a Páramo.

Producción forraje. La producción de forraje es de 3,334 kg/ha de materia seca, siendo superior a Páramo en un 22%.

Resistencia a roya. En relación a la susceptibilidad a la Roya del Tallo puede ser atacada hasta un 10% de la planta con una reacción de moderada susceptibilidad.
Agradecimiento.

Los autores desean externar que estas cinco nuevas variedades han sido obtenidas gracias al esfuerzo conjunto del Campo Experimental Valle de México y a las personas que ahí han trabajado en el Programa de Avena, en especial al Sr. Carlos Márquez Gutiérrez, Ing. Carlos Jiménez González y Dr. Uriel Maldonado Amaya. También se agradece las sugerencias del personal de la Universidad de Minnesota de manera especial al Dr. Deón D. Stuthman.
INTRODUCCION.

En primer lugar, quiero transmitirles un saludo y parabienes de la comunidad de aveneros de los Estados Unidos de América. Es para mí muy grato ver tanta gente reunida en este lugar donde se celebra el "Primer Día del Avenero". Este debe ser probablemente el grupo más grande reunido para tal fin, estoy muy complacido de ser parte del programa. La conferencia que hoy voy a presentar es: **Mejoramiento Genético de la Avena**, este tema regularmente lo imparto en un curso completo durante un año escolar.

El mejoramiento genético requiere de etapas múltiples y trabajo continuo. El proceso consta de ocho etapas, todas son importantes y deben tener la siguiente secuencia:

1). Determinar los objetivos del mejoramiento así como las actividades a desarrollar.

2). Hacer un inventario de los recursos genéticos del cultivo a mejorar.

3). Basados en dicho inventario, seleccionar los progenitores más adecuados.

4). Realizar los cruzamientos más apropiados.

5). A medida que las progenies son desarrolladas, elegir un método de mejoramiento genético, (con relación a esta disciplina, la actividad de realizar

*University of Minnesota.

Traductores: Dr. José J. Salmerón Zamora e Inq. Philip Dyck Sudermann.
Investigadores del CESICHI-CITAP, CHIHUAHUA.
los cruzamientos y la elección y utilización de métodos de selección actualmente recibe la mayor atención, sin embargo, todas las etapas son importantes y requieren que se tenga un programa que sea eficiente y efectivo.

6). Después de identificar las mejores poblaciones segregantes, las líneas avanzadas derivadas de estas poblaciones son incluidas en ensayos de rendimiento para comparar su capacidad de producción con respecto a las variedades actuales como testigos.

7). Una vez que las variedades por liberarse son identificadas, las reservas de semillas son purificadas y multiplicadas.

8). Finalmente distribuirlas a los productores. Estas dos últimas etapas, son importantes ya que con esto se determina el trabajo y si éste no es realizado correctamente, todos los esfuerzos de las fases previas del proceso se pierden (y por lo tanto los recursos son malgastados o desperdiciados).

ESTABLECIMIENTO DE OBJETIVOS Y ACTIVIDADES A DESARROLLAR.

La primera fase puede ser llamada identificación de características a mejorar. Es una parte muy importante en el proceso y debe de estar escrita y comunicada claramente a todos los participantes del proyecto y de esta forma todos conocerán las metas finales. Hay por lo menos cuatro factores que deben considerarse cuando se determinan los objetivos del proyecto y se identifican las características importantes. En primer lugar, es la planta misma. ¿Qué es lo que la planta necesita para ser más útil, de mayor valor y más productiva?. El segundo es el de reconocer el ambiente en el cual esas plantas deberán crecer; el ambiente incluye el clima, condiciones meteorológicas y el suelo. ¿Qué limitaciones deberá de ejercer este ambiente en las plantas?. Tercero, tomar en consideración las necesidades de los productores en el contexto del sistema de producción y cómo ese cultivo en particular deberá de encajar dentro de ese sis-
tema de producción y cómo el cultivo será utilizado por el productor. Cuarto, es necesario considerar los requerimientos de los consumidores. Debido a que el siguiente ponente, el Sr. Roskens hablará sobre ese tópico, se omitirá en esta presentación.

INVENTARIO DE MATERIAL GENÉTICO.

Después de determinar los objetivos del proyecto e identificar las características que se les dará énfasis, se realiza un inventario del germoplasma disponible para el plan de mejoramiento genético. Este material puede ser agrupado en cinco categorías. El primer grupo de material y el más fácil de obtener es de variedades que están siendo cultivadas o han sido sembradas en la región. Un segundo grupo son variedades que se siembran en regiones cercanas. Estas variedades son las más fáciles de usar porque también están sembradas comercialmente. Un tercer grupo comparable a los anteriores son las líneas mejoradas provenientes del programa local. Si las características que se requieren están dentro de estos grupos, será relativamente fácil de lograr los objetivos. Sin embargo, en ocasiones cuando los niveles de las características que se están buscando no están disponibles en esos grupos, el mejorador de plantas tendrá forzosamente que recurrir a un material más exótico e inadaptado. Estos materiales también poseerán una serie de genes no deseados. En algunas ocasiones tendrán que utilizarse especies vegetales afines o relacionadas para obtener un mejoramiento. Si se usan estos últimos materiales, los logros del mejoramiento van a tornarse más difíciles de alcanzar porque ello implicará la extracción de genes deseables de este material al mismo tiempo que se están eliminando todos los materiales no deseados. Habrá situaciones en que la característica deseada no pueda ser encontrada en ninguno de esos grupos. Cuando esto ocurre, todavía existe la posibilidad de usar mutagénesis para crear la variabilidad genética necesaria para alcanzar el mejoramiento deseado.
SELECCIÓN DE PROGENITORES.

Una vez que el mejorador está consciente de la disponibilidad del material genético que tengan los niveles deseados de las características de interés, se seleccionan los progenitores. Hay una serie de métodos que pueden ser usados para seleccionar los progenitores. Una alternativa en la selección de progenitores es la realización de cruzas de lo mejor por lo mejor o variedad por variedad. Esta metodología resulta satisfactoria a menos de que los dos genotipos estén muy emparentados, en tal situación la cruza entre ellos no generará mucha variabilidad genética.

Regresando a los requerimientos de mejoramiento, identificados en sus objetivos, los progenitores que proporcionarán la variabilidad genética específica deberán de ser seleccionados. Esas selecciones pueden entonces acomodarse en pares, las cuales deben complementarse una con otra y entre las dos cubrir todas las deficiencias que cada progenitor tenga. Una alternativa relacionada, es el de dividir la característica de interés dentro de sus diferentes partes que la componen. Los progenitores potenciales son entonces apareados para lograr complementar las necesidades de sus componentes y de esta manera la combinación deberá de producir el mejoramiento deseado.

En algunos casos la estrategia deberá ser de mejorar el germoplasma. En este caso, el objetivo específico no será el de generar variedades, sino el de obtener progenitores, los cuales con cruzamientos adicionales, puede esperarse que se obtengan variedades; sin embargo, esos tipos de cruzas no se espera que generen nuevas variedades, aunque ellas pueden en algunas ocasiones generar progenies de interés comercial.

HIBRIDACIÓN.

Después de escoger los progenitores, la siguiente etapa es la de efectuar hibridaciones entre ellos y crear variabilidad genética entre la progenie. Pa-
ra el cultivo de avena muchos procedimientos son comúnmente usados. Uno de ellos es el método tradicional en el cual el polen es transferido a mano de la planta macho a la planta hembra. La otra posibilidad es la de usar el método descrito primeramente por McDaniel en Texas; someramente este método incluye el corte de las flores femeninas, haciendo un corte seccional a la mitad, se remueven las anteras de ellas y se colocan las flores del padre masculino en una posición más arriba que el progenitor femenino. Ambas panículas se encierran en una bolsa de glacine y el polen caerá dentro de las flores abiertas. Este método es apropiado especialmente cuando se requiere gran cantidad de semillas por cruce.

Como se indicó anteriormente, en algunos casos la variabilidad genética deseada puede no existir. El mejorador es forzado en esos casos a tratar de crear la característica de interés, usando la ayuda de agentes mutágenos. En esta situación, también es necesario pensar en usar el potencial de ingeniería genética. Con los métodos tradicionales, se restringe al cruzamiento de avenas con avenas o cruzamiento de avenas con otras especies. Sin embargo, a medida que la tecnología asociada con la ingeniería genética se hace disponible será posible introducir ADN proveniente de maíz, trigo u otras especies, las cuales pueden contener genes que hagan la planta de avena más productiva o valiosa.

a). Retrocruza. Este método es más apropiado cuando el objetivo es transferir una característica heredada sencillamente a una línea, la cual es diferente y muy destacada. La característica puede ser reconocida visualmente y similar al sistema pedigree pero en el método de retrocruza el objetivo es reparar una sola característica que es indeseable y es satisfactoria en todas las demás restantes. Este método trabaja muy bien cuando hay un progenitor recurrente destacado, el cual tiene un futuro amplio especialmente si la imperfección es corregida. Debido a que el énfasis está en una sola característica, hay poca esperanza de mejorar las otras características. Como ya se mencionó, la caracte
ística es altamente heredable, siendo posible utilizar invernaderos y viveros fuera de la estación.

b). Selección Masal o Método Gravimétrico. Esta estrategia trabaja mejor cuando la selección visual no es efectiva. Debido a que el método genealógico no es efectivo para características de baja heredabilidad, el método masal es utilizado para tomar la ventaja de la competencia entre plantas y para seleccionar entre ellas mismas y seleccionar las progenies superiores. La selección natural puede hacer el mejoramiento contra los riesgos que ocurren normalmente, tales como enfermedades o heladas, considerando que todas las plantas en la población obtienen una exposición uniforme a ellas. Cuando ése es el caso, solamente las plantas que pueden resistir tales riesgos son exitosas para producir semilla para la siguiente generación. Una limitante de este método es que el programa está restringido al área de producción y a las condiciones de la producción en la región donde se produce la semilla. Sin embargo, la selección masal permite el mejoramiento rápido de adaptación porque si las plantas no pueden producir semilla, ellas no van a sobrevivir para avanzar a la siguiente generación. La otra ventaja en relación al mayor número de procedimientos de selección, el método masal requiere pocos recursos.

c). Descendencia de una sola semilla (DSS). Esta metodología puede ser la mejor para cruzar líneas buenas por líneas buenas, porque normalmente en esas cruzas generalmente no hay diferencias obvias para hacer selecciones visuales en favor o contra de ella. El objetivo principal de la descendencia de una sola semilla es la de acumular la estabilidad genética u homocigocidad tan rápido como sea posible. Por eso, este sistema trabaja mejor cuando generaciones múltiples están disponibles por año. En Minnesota nosotros podemos obtener tres cosechas por año; en otras localidades pueden obtenerse cuatro. Con el método (DSS) es posible iniciar con ensayos de rendimiento y evaluar más temprano, tan pronto como las progenies sean homocigóticas (dos o tres años). El método
DSS requiere muy pocos recursos antes de evaluar el rendimiento, porque necesita uno o dos granos por planta para producir la siguiente generación.

d). Combinación de métodos. Como estaba sugiriendo anteriormente, se utilizan combinaciones o modificaciones de estos métodos tal como habían sido descritos y aplicados originalmente. La mayor parte de los mejoradores utilizan combinaciones o modificaciones de los métodos clásicos en lugar de confiar en un solo método. Además, las combinaciones permiten cierta flexibilidad para tratar con las circunstancias imprevistas y permite también los cambios de un método al otro en cualquier ambiente para lograr una eficiencia mayor.

MÉTODOS DE SELECCIÓN.

Una vez que la variabilidad genética ha sido obtenida por hibridación u otras formas y un cierto número de progenies son desarrolladas de las poblaciones formadas, el mejorador debe de elegir un método de selección para discriminar entre las progenies y para identificar finalmente los genotipos superiores. Hay un número de las opciones aprovechable por el mejorador de avena, las enunciaré y discutiré en detalle. Las opciones incluyen: a). El método de pedigree, el cual es a veces referido en México como el método genealógico; b). La retrocruza (en realidad es una estrategia de mejoramiento no un método de selección); c). El método masal, el cual en el Programa de Mejoramiento en Avena en México se llama método gravimétrico; d). Descendencia de una sola semilla; e). Varias combinaciones o modificaciones de las anteriores opciones y f). Finalmente selección recurrente.

A continuación enunciaré estos métodos con más detalle:

a). El método de pedigree. Trabaja bien cuando es posible identificar visualmente las líneas superiores cuando dichas características tienen una herencia alta, buena correlación entre los progenitores y sus descendencias, éstas
son formas para describir situaciones donde el método de pedigree (genealógico) trabaja bien. El método genealógico permite practicar el arte de mejoraimiento de plantas además de utilizar la ciencia cuando se seleccionan progenies superiores. El método genealógico también permite el uso de viveros fuera de estación y/o los invernaderos porque el medio ambiente debe tener poco efecto en la expresión de las características, las cuales interesan.

b). Selección recurrente. La selección recurrente fue enunciada también como una metodología; este método parece que se adapta mejor para el desarrollo de los progenitores o del germoplasma cuando la meta es mejorar intensivamente una o dos características en lugar de desarrollar variedades. En la selección para un carácter simple es imposible generar variedades nuevas, porque otras características importantes no recibirán suficiente atención para satisfacer los requerimientos mínimos. En la selección recurrente alelos favorables para la característica o características de interés, son acumulados; sin embargo, la variabilidad es mantenida por la garancia genética debido al continuo intercruzamiento. Este método consiste en reciclar sistemáticamente el germoplasma derivado del mejoramiento en cada ciclo de selección recurrente. En Minnesota tenemos un programa de selección recurrente para rendimiento de grano que ha estado en marcha desde 1968 y ha producido algunos aumentos impresionantes de rendimiento durante cinco ciclos.

ENSAYOS DE RENDIMIENTO.

Sin tomar en cuenta el método de selección finalmente elegido, en un cierto tiempo habrá un número de líneas individuales que poseerán características particulares de interés y que llenan la definición de los objetivos determinados inicialmente. Estas líneas serán candidatos para los ensayos de rendimiento; el fin principal de los ensayos de rendimiento es de comparar estos candidatos con el testigo comercial, para determinar si ellas son más productivas para esta re-
gión de México, los testigos clásicos incluyen a: Páramo, Cuauhtémoc, Chihuahua y la variedad antigua Burt (Texas). La meta de los ensayos de rendimiento es de acumular el número de observaciones sobre las localidades y años y calcular el promedio de estas observaciones. Los ensayos también permiten la observación de otras características que no se tomaron en cuenta cuando se hicieron las selecciones, tales como el acame, el desgrane y la dificultad de la trilla, porque tales características no se observan fácilmente en las primeras generaciones después de hacer las cruzas. Las pruebas de rendimiento son la parte más costosa del esfuerzo del mejoramiento de las plantas, ya que es la etapa más importante del proceso, porque ésta es la última evaluación para determinar el mejoramiento logrado.

LA PURIFICACIÓN Y MULTIPLICACIÓN

Cuando se identifican las líneas para ser variedades basadas en el desempeño de los ensayos de rendimiento, se inicia la purificación y la multiplicación de la semilla básica en parcelas chicas. El establecimiento de las parcelas de semilla básica es una etapa de vital importancia en el esfuerzo total por determinar la pureza final, ésta raramente se aumenta durante la multiplicación de la semilla; lo que se logra con la multiplicación de semilla es mantener la integridad genética de la semilla básica de la línea superior, mientras que la cantidad de semilla es aumentada y está disponible para la distribución.

LA DISTRIBUCIÓN A LOS AGRICULTORES.

Después que la semilla de la línea seleccionada para ser variedad ha sido aumentada a un volumen suficiente, está en condiciones para ser identificada con un nombre comercial y distribuida a productores de semilla certificada. Estos productores deberán tener la experiencia en la producción de semilla certificada con el fin de mantener la pureza genética de la variedad. También es importante la eliminación de otros cultivos, especialmente cebada o cultivos di
ferentes a avena.

Por último, el procedimiento de distribución de semilla es solicitar comen-
tarios de éstas a los productores para conocer si prefieren más la nueva varie-
dad que las existentes. Esta comunicación permite al investigador mejorar el
proceso descrito y modificar los objetivos. Con la redefinición de objetivos,
el proceso continúa otra vez; finalmente, es importante reconocer que el desa-
rrollo de la avena perfecta es improbable. Aunque una variedad perfecta fuera
desarrollada, los requerimientos de la producción cambian constantemente, por
eso siempre se necesitarán nuevas variedades.
DESCRIPCION DE ALGUNOS COMPONENTES TECNOLOGICOS DEL CULTIVO DE AVENA

M.C. Venancio D. Solano Romero*

INTRODUCCION.

Con objeto de precisar el manejo agronómico del cultivo de avena en la región temporalera de Chihuahua, investigadores del CESICH realizaron en 1979 una encuesta a productores. La información obtenida indica que la tecnología es variable, sobresaliendo los siguientes aspectos:

Tamaño de la parcela.

Se encontró que ésta es producida en predios o parcelas que varían en superficie, así un 25% siembran lotes de 10 ha; 50% 20 ha y el 25% restante una superficie mayor a 40 ha (Figura 1).

Labores de presiembra:

Las prácticas de preparación del suelo para efectuar la siembra de avena son las utilizadas convencionalmente para los cultivos de maíz y frijol. El 95% de los productores efectúan el barbecho de enero a marzo a una profundidad de 20 a 25 cm y todos realizan un rastreo durante los meses de mayo a julio (Figura 2), al mismo tiempo que un 80% realiza un tabloneo, con la finalidad de proporcionar una "buena cama de siembra" al sistema radical y obtener uniformidad en la emergencia de las plantas.

Siembra.

El 50% de agricultores realizan un monocultivo con avena, el resto de agricultores usan rotación con maíz y frijol con un porcentaje de 25% respectivamente (Figura 3).

*Investigador del Programa de Suelos del CESICH-CIFAP, CHIHUAHUA.
Figura 1. Distribución del tamaño de la superficie sembrada de avena.
Figura 2. Época de labranza primaria y siembra de avena.
La siembra se realiza durante los meses de julio y principios de agosto con máquina sembradora-fertilizadora en hileras separadas a 15 cm, utilizando una cantidad de semilla de 80 a 90 kg/ha depositando la semilla a una profundidad de 5 a 7 cm.

Con base a la investigación realizada, se cuenta con información acerca de la época de siembra (Figura 2), las cuales se delimitan de acuerdo al ciclo vegetativo de las variedades sembradas.

Para variedades de ciclo tardío (120 días) como Cuauhtémoc y Chihuahua el período de siembra es del 30 de junio al 15 de julio, mientras que las variedades de ciclo precoz (85 días) como Páramo y Guolatao del 30 de junio al 25 de julio, es conveniente subrayar que este rango óptimo de siembra dependerá de la presencia del temporal, la densidad de siembra es de 90 a 100 kg/ha.

Fertilización.

Esta práctica la realiza el 100% de los productores al momento de la siembra, existiendo una fuerte variación respecto a las cantidades usadas de los principales elementos nutritivos, siendo éstos para nitrógeno de 5 a 20 unidades y para fósforo de 15 a 46 unidades por hectárea. A este respecto la investigación realizada ha determinado que la fórmula 60-40-0 es la más reductible económicamente (Cuadro 1 y Figura 4). Sin embargo, falta precisar la tecnología considerando la interacción, densidad de población, fertilización, manejo anterior y disponibilidad de agua.

Combate de maleza.

El diagnóstico detectó que un 40% de los productores realizan un control químico utilizando herbicidas como el 2,4 D'amina en dosis de 0,75 a 1,0 litros /ha, aplicado a las tres semanas de emergido el cultivo (generalmente coincide con la etapa fenológica de amacolle). Dado que la infestación de maleza es uno
Figura 1. Respuesta de la producción de grano de avena a la aplicación de nitrógeno y fosforo.

Guerrero, Chih. 1982.
de los factores que reduce el rendimiento del cultivo, el Campo Experimental "Sierra de Chihuahua" se ha estudiado y determinado que el período crítico de competencia entre la maleza y el cultivo se presenta en los primeros sesenta días a partir de la emergencia.

Con base a estos conocimientos es recomendable para lograr un control efectivo de la maleza, efectuar un rastreo de presiembra para eliminar aquella recién emergida. Si se presentan infestaciones de maleza de hoja ancha después de la emergencia del cultivo se pueden utilizar aplicaciones de herbicidas en la etapa de amarillamiento del cultivo (véase Cuadro 3).

Cosecha.

En la región esta práctica en su totalidad se realiza en forma mecanizada con diversos implementos como son cortadoras, engavilladora y cortatrilla. Esta práctica es conveniente llevarla a cabo cuando la avena ha llegado a su madurez fisiológica con objeto de evitar pérdidas de grano, de manera práctica esto corresponde cuando la panícula se torna amarillenta o blancuzca.
CUADRO 1. COMPARACION DE LA FERTILIZACION REGIONAL CON LA RECOMENDADA POR EL CESICH.

<table>
<thead>
<tr>
<th>ELEMENTO NUTRITIVO</th>
<th>FERTILIZACION REGIONAL (Unidades)</th>
<th>C.A.E.</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>5 a 20</td>
<td>60</td>
</tr>
<tr>
<td>P</td>
<td>15 a 46</td>
<td>40</td>
</tr>
</tbody>
</table>

CUADRO 2. MALEZA PREDOMINANTE EN SIEMBRAS DE AVENA.

<table>
<thead>
<tr>
<th>NOMBRE COMUN</th>
<th>NOMBRE CIENTIFICO</th>
<th>% DE FRECUENCIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quelite</td>
<td>Amaranthus palmeri (S)</td>
<td>83</td>
</tr>
<tr>
<td>Zacate de agua</td>
<td>Echinochloa colona (L.) Link</td>
<td>86</td>
</tr>
<tr>
<td>Mirasolillo</td>
<td>Simisia amplexicaulis</td>
<td>80</td>
</tr>
<tr>
<td>Jube</td>
<td>Bidens frondosa L.</td>
<td>78</td>
</tr>
<tr>
<td>Cadillo</td>
<td>Xanthium strumarium L.</td>
<td>51</td>
</tr>
<tr>
<td>Malva</td>
<td>Anoda cristata (L.) Schlecht</td>
<td>24</td>
</tr>
</tbody>
</table>

CUADRO 3. CONTROL QUIMICO DE LA MALEZA.

<table>
<thead>
<tr>
<th>PRODUCTO COMERCIAL</th>
<th>DOSIS (LT/HA)</th>
<th>EPOCA DE APLICACION</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4 D'amina</td>
<td>1.5*</td>
<td>Amacollamiento</td>
</tr>
<tr>
<td>Dicamba - 480</td>
<td>0.3</td>
<td>del</td>
</tr>
<tr>
<td>Dicamba 12-24</td>
<td>1.0</td>
<td>Cultivo</td>
</tr>
<tr>
<td>Brominal</td>
<td>1.0</td>
<td></td>
</tr>
</tbody>
</table>

*Diluidos en 200 lt de agua.
EL CULTIVO DE AVENA COMPONENTE ESTRUCTURAL DEL SISTEMA TEMPORAL EN LA BAJA BACICORA.

Manuel R. Ramírez Legarreta

INTRODUCCION.

El término ECOSISTEMA representa el concepto de totalidad en la naturaleza y tal denominación se da a comunidades naturales de organismos que presentan relaciones complejas entre ellas y su medio ambiente. Dichas interacciones son gobernadas por leyes naturales que permiten al ECOSISTEMA evolucionar y alcanzar estabilidad; el hombre a través de la agricultura ha interrumpido la evolución de los ecosistemas formando los AGROECOSISTEMAS, en la mayoría de las ocasiones sin intentar comprender los primeros para afrontar y guiar con responsabilidad a los segundos.

El sistema temporalero de Chihuahua es con todas sus características un AGROECOSISTEMA, donde se han eliminado las especies naturales e introducido otras, pasando dichas comunidades nativas a la categoría de maleza u organismos dañinos.

tanto el ECOSISTEMA como AGROECOSISTEMA deben contemplarse a pesar de sus diferencias en complejidad como un conjunto de elementos que interactúan entre sí y con su medio ambiente, para lograr un objetivo común. Así el AGROECOSISTEMA (o sistema) temporalero de Chihuahua está compuesto de una serie de elementos que por su ordenación e interacción deben de observarse como un todo para el mejor manejo y la óptima toma de decisiones.

El presente escrito trata de ubicar al cultivo de avena como un componente

*Investigador del Programa de Fitopatología del Campo Experimental "Sierra de Chihuahua". CIFAP, CHIHUAHUA. INIFAP.
estructural de este sistema, resaltando la necesidad de que tanto la investiga-
ción como el resto de instituciones que apoyan a la agricultura de temporal
cronican este enfoque como un mayor acercamiento a la realidad biológica, so-
cial y económica del productor temporalero.

TECNOLOGIA DE PRODUCCION Y EL ENFOQUE CULTIVO - SISTEMA,

El cultivo de avena en México adquiere importancia a partir de los años
1922-1926, debido a la inmigración de menonitas procedentes del Canadá que se
establecieron en el Noroeste de Chihuahua, haciendo de esta región el área de
siembras más concentrada del mundo occidental: De 140,000 a 200,000 hectáreas
anuales, representando el 76% de la superficie total sembrada con avena en Mé-
xico.

En sí, es más factible pensar que el cultivo de avena fue más una adecua-
ción cultural al agroecosistema que una adecuación ecológica, aunque se sabe
que esta especie se adapta perfectamente a regiones con altitudes desde los 250
msnm, precipitaciones pluviales promedio de 381 mm y temperatura medias anuales
de 21°C.

El manejo requerido para producir *Avena sativa* a nivel comercial es de los
tres cultivos regionales (maíz, frijol y avena), el más sencillo y el que menos
mano de obra requiere, debido a que son pocas las prácticas que se emplean en
él ya que básicamente todas son mecanizadas.

Lo anterior se visualiza con mayor claridad en el Cuadro 1, donde mediante
encuestas realizadas a productores de maíz, frijol y avena se comparan algunas
de las prácticas más comunes en el manejo de cultivos. Observándose que de las
tres especies regionales que más superficie ocupan, el frijol (*Phaseolus vulgaris*)
es el de tecnología más compleja.

Ahora bien, dicho cuadro se estructuró en base a información obtenida por
cultivo, es decir, se pensaba que agricultores que tenían sembrado frijol eran exclusivos de esta especie, sucediendo lo mismo para productores con maíz y productores con avena.

Sin embargo, este enfoque propició sesgos de información muy importantes ya que intentar comprender el agroecosistema mediante el enfoque clásico culti-

vo-sistema aislando a éste y manejándolo como un sistema independiente del res-

to de cultivos y exclusivo de un grupo de agricultores es una concepción erró-

nea que puede provocar desviaciones graves en la planificación científica, asigna-

ción de recursos y toma de decisiones a nivel superior.

Así pues, analizando el Cuadro 1 se determinan algunos de los sesgos de in-

formación logrados cuando se manipula este tipo de enfoque.

Al observar la columna de la actividad barbecho (se incluyó sólo a los pro-
ductores que la realizan durante noviembre-enero por ser la época más adecuada) se puede detectar que esta práctica se realiza en los tres cultivos quedando la interrogante de ¿por qué si las especies se siembran en fechas diferentes (vea columna siembra) en todos los cultivos-sistema se presentó dicha actividad al menos en el 50% de los casos?. Sucediendo lo mismo con el primer rastreo el cual se realiza prácticamente en una misma época (diciembre-abril).

Esta información muestra un sistema demasiado ineficiente; si se considera que el frijol se siembra en junio y la avena en julio es de esperarse que por muy bueno que sea un barbecho en un invierno de buenas precipitaciones pluvia-

les, la humedad captada no llegaría hasta los meses indicados. Siendo ilógico considerar que alguien que piense en el cultivo antes que en las condiciones climáticas que van a propiciar el desarrollo de éste, barbeche en noviembre-ene-

ro y rastree en diciembre-abril.

Lo anterior es el error principal del enfoque culti-vo-sistema donde se su-
CUADRO 1. TECNOLOGÍA DE LABRANZA PARA LOS TRES PRINCIPALES CULTIVOS DEL SISTEMA TEMPORALERO DE CHIHUAHUA

<table>
<thead>
<tr>
<th></th>
<th>DARBECHO</th>
<th>PRIMER RASTREO</th>
<th>SEGUNDO RASTREO</th>
<th>TERCER RASTREO</th>
<th>SIEMBRA</th>
<th>FERTILIZACION</th>
<th>PRIMER CULTIVO</th>
<th>SEGUNDO CULTIVO</th>
<th>TERCER CULTIVO</th>
<th>CUARTO CULTIVO</th>
<th>DESHIERBE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frijol</td>
<td>% 70</td>
<td>59</td>
<td>35</td>
<td>3</td>
<td>100</td>
<td>95</td>
<td>100</td>
<td>95</td>
<td>30</td>
<td>3</td>
<td>79</td>
</tr>
<tr>
<td>Maíz</td>
<td>% 76</td>
<td>81</td>
<td>8</td>
<td>--</td>
<td>98</td>
<td>63</td>
<td>62</td>
<td>37</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>E Nov-Ene</td>
<td>Dic-Mar</td>
<td>Abr</td>
<td>--</td>
<td>Abr-May</td>
<td>Siembra o coc.</td>
<td>Jun-Jul</td>
<td>Agosto</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Avena</td>
<td>% 50</td>
<td>34</td>
<td>53</td>
<td>--</td>
<td>90</td>
<td>92</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>E Nov-Ene</td>
<td>Ene-Abr</td>
<td>Jun-Jul</td>
<td>--</td>
<td>Jul</td>
<td>Siembra</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

% = Porcentaje de agricultores que realiza la actividad
E = Época en que se realiza la actividad.
estima la toma de decisiones del productor (temporalero en este caso), así como el conocimiento que tiene de su medio ambiente, conocimiento que en forma empírica fundamenta muchas de las prácticas de cultivo que realiza.

Siguiendo con el análisis del Cuadro 1, se hace patente también la incongruencia y la falta de estabilidad de los porcentajes presentados; cómo es posible que del 70% de agricultores de frijol que barbechan durante noviembre-enero sólo el 59% efectúe el primer rastreo en diciembre-marzo y que el porcentaje siga disminuyendo en el segundo y tercer rastreo. La respuesta podría ser que algunos productores de frijol realizan más prácticas que otros, lo cual sucede en efecto si los tan llamados productores de frijol pensaran también producir maíz o avena.

El esquema se repite para los agricultores considerados maiceros aunque éstos guardan un poco más de congruencia ya que sólo un 8% del total (ver segundo rastreo-maíz) representaría el sesgo. En cuanto a los agricultores de avena el 50% realiza el barbecho durante noviembre-enero; el 34° el primer rastreo durante enero-abril; y el 53° da el segundo rastreo durante junio-julio. Como ya se mencionó por muy eficiente que haya sido dicho barbecho en un muy buen invierno no es lógico pensar que la humedad invernal vaya a llegar hasta la fecha de siembra de avena que es en julio.

Esta mezcla incongruente de porcentajes y actividades extemporáneas indica que, aunque efectivamente existen agricultores dedicados al monocultivo (exclusivamente frijol, maíz o avena) tanto en espacio como en tiempo, un gran número de productores utilizan a los cultivos como alternativas de producción dentro de su(s) predio(s).

Volviendo al Cuadro 1, es muy factible que de los catalogados en el cultivo frijol sólo el 35% lo hayan sembrado ya que el segundo rastreo lo dieron en fecha próxima a la siembra de frijol, en tanto que el resto de productores utilizó
maíz y avena. Por supuesto lo anterior no implica que el 35% no haya utilizado dos o tres especies.

En el renglón de maíz las tendencias pueden ser más definitivas, ya que por fecha de siembra éste es el cultivo más próximo a establecerse a partir del barbecho, por lo que en ocasiones no requiere un segundo rastreo, haciendo suponer que al menos el 81% de los productores analizados en este estrato se dedicó al maíz y el 19% restante a los otros cultivos.

Los que se dedicaron al cultivo de la avena en el tercer estrato o subsistema están marcados por el segundo rastreo (53%) ya que para esas fechas sólo queda el sembrar avena, debiéndose ubicar el resto de productores en maíz y frijol y debido a que realizaron el barbecho y el primer rastreo en épocas que permiten sembrar dichas especies.

Lo anteriormente expuesto muestra claramente cómo la información cultivo-sistema proporciona esquemas sesgados y dispersos que no señalan la tecnología de producción del cultivo, ni la tecnología opcional que el productor utiliza al manejar determinadas especies como posibles alternativas en la utilización de su predio y el clima.

LOS CULTIVOS Y EL CLIMA.

Dado que el sistema agrícola al que se hace referencia es temporalero, tanto las especies cultivadas como la toma de decisiones del productor dependen básicamente de la cantidad y calidad de la precipitación pluvial. Así pues, cuando se menciona que las especies cultivadas como tales son alternativas de producción, debe de comprenderse que dichas alternativas son utilizadas por el agricultor para adecuar su proceso productivo a las condiciones climatológicas de un ciclo en particular.

Es decir, si se tiene un buen invierno se sembrará maíz, si el invierno
fue mala el productor esperará al inicio del temporal y se dedicará al frijol, y si el temporal se retrasara aún más su última opción sería avena.

La Figura 1, corrabora lo anterior; en ésta se esquematiza el comportamiento del hectareaje ocupado por las tres especies cultivadas más importantes en la región durante los años 1979-1985. Dicha Figura, permite apreciar cómo durante 1980, año de mala precipitación (incluyendo invierno), el hectareaje de maíz se abatió aumentando grandemente el de frijol y ligeramente el de avena, el siguiente ciclo las precipitaciones fueron más altas disparándose la superficie de maíz y decreciendo la de frijol. Repitiéndose el fenómeno en los años siguientes.

Un aspecto importante a señalar en esta figura es la estabilidad que guarda la avena respecto a la muy marcada variabilidad del maíz y frijol, debido básicamente a que por ser última opción climática del agricultor casi siempre encontrará condiciones de precipitación adecuadas para su desarrollo. En los últimos 45 años el máximo retraso del inicio de lluvias en esta región ha sido el 19 de agosto de 1951.

EL CLIMA, LA TOMA DE DECISIONES Y EL CULTIVO DE AVENA.

En base al análisis anterior y sin evitlar algunos supuestos y sesgos propiosados por la misma información utilizada y por la carencia de otra, se presenta el siguiente diagrama de flujo (Figura 2), donde se esquematiza la toma de decisiones que el agricultor realiza en base a las condiciones climáticas y cómo se ubica el cultivo de avena dentro del sistema temporalero de la región Noreste de Chihuahua.

El diagrama indica que el agricultor que no se dedica al monocultivo año tras año realiza un barbecho durante noviembre-enero sin tener aún clarificada la especie a sembrar y con el objetivo de aprovechar la precipitación invernal,
Figura 1. Dinámica de la superficie sembrada en la región temporalera del Estado.
Figura 2. EL CLIMA Y LA TOYÁ DE DECISIONES EN EL AGREGECOSISTEMA DE TEMPORAL DE CHIHUAHUA.
posterior al barbecho realiza el primer rastreo durante diciembre-marzo aún con la misma perspectiva anterior que el barbecho a fin de sellar éste y evitar pérdidas de humedad. Si las precipitaciones invernales son buenas (> 75mm) el productor decide rastrear por segunda vez durante abril y siembra maíz (algunos nunca dan este segundo rastreo ya que el primero fue muy próximo a la fecha de siembra (línea... en el esquema).

Si las condiciones de precipitación invernal no son adecuadas al agricultor se espera a que ocurran las precipitaciones de mayo y junio y si existe la humedad adecuada en el suelo al 15 de julio, realiza el segundo rastreo en junio y siembra frijol.

Cuando el temporal se retrasa aún más ya sea en iniciar o en regularizarse, el productor espera precipitaciones en julio, las cuales son generalmente seguras y una vez que se tiene la humedad adecuada realiza el segundo rastreo en julio y siembra avena. Esto no implica que el agricultor no diversifique cultivos, es decir, que partes de su predio las dedique a las tres especies, cada una bajo la secuencia presentada anteriormente.

Sin embargo, la dinámica del sistema no termina en la cosecha de los cultivos, ya que éste se complementa con otros aspectos como la ganadería que el mismo diagrama presenta y para el cual se dedica parte de la biomasa que sale del sistema agrícola, como son los esquilmos que sirven de alimento al ganado durante el invierno prolongado aún más al alcance del ecosistema y del que conocemos poco.

Además, de la misma biomasa que se produce, se selecciona la semilla a utilizar el siguiente ciclo, se comercializa otra parte y se almacena para autoconsumo el resto.

Como se puede observar, bajo el enfoque de cultivo-sistema, mucha informa-
ción no se visualiza y otra se capta deformada, por lo que no es posible com-
prender el sistema como un todo y en el que la avena es un componente primor-
dial, debido a que su producción está prácticamente garantizada año con año
por las condiciones climáticas de la región.

Finalmente es necesario mencionar que el enfoque cultivo-sistema es útil
cuando se logra llegar a ese subnivel de toma de decisiones, pero antes se nece-
sita comprender los niveles superiores que determinan e influyen sobre la espe-
cie cultivada y donde ésta es un subsistema.

COMENTARIO FINAL.

Bajo el enfoque anterior se percibe la necesidad de conocer aún más el sis-
tema temporalero de Chihuahua, el cual como se mencionó anteriormente no termi-
na con la cosecha de las tres especies preponderantes sino que partes de éstas
se transforman en carne, leche y queso siguiendo un camino diferente, pero todo
dependiendo del clima como factor esencial.

Además, es necesario también que la investigación fundamentalmente sus proyectos
en el conocimiento amplio (lo más amplio posible) de los sistemas agrícolas en
los que se encuentra inmersa y que las disciplinas científicas interaccionen for-
mado un sistema de investigación que tenga como fin común el manejo integrado
del agroecosistema como un todo y no como se hace comúnmente en donde se reali-
za un manejo genético de elementos del sistema o un manejo fitosanitario de los
mismos elementos.

Lo anterior requiere grandes esfuerzos; más humanos que económicos y quizá
los resultados no sean a corto plazo, pero si garantizando el manejo adecuado
del agroecosistema tanto desde el punto de vista ecológico como económico y so-
cial.

Por otro lado es importante que otras instituciones como las crediticias
comprendan que el ciclo agrícola de temporal no inicia con el año sino tiempo antes; con el fin de realizar una adecuada asignación de recursos.

BIBLIOGRAFÍA

CARACTERÍSTICAS DESEABLES PARA ELABORAR HOJUELAS DE AVENA

A. Bruce Roskens*

Doy las gracias a la Asociación de productores de avena por la invitación a presentar esta plática en este evento.

Estoy muy complacido y sorprendido de ver un grupo tan grande interesado en conocer la nueva tecnología para incrementar la productividad de este cereal.

Este cultivo de avena como una actividad productiva es una empresa que involucra a fitomejoradores, agricultores, productores de semilla, comerciantes de grano, industrias y consumidores. A menos de que todos los involucrados en el proceso productivo comuniquen sus necesidades, los avances en cantidad y calidad del cultivo no van a ocurrir. Aparentemente por los trabajos presentados en esta reunión, el rendimiento de grano (toneladas/ha) ha aumentado durante los pasados años debido a las nuevas variedades, sin embargo, así como el rendimiento ha evolucionado así también los requerimientos en calidad y contenidos nutricionales del grano de avena. A Continuación se enumeran las especificaciones para la compra de grano de avena para la fabricación de hojuelas de alta calidad por compañías industrializadoras de Estados Unidos y Canadá.

Las especificaciones consideran estímulos en su cumplimiento y castigos o descuentos para valores inferiores a los referidos en el Cuadro I.

* Compañía Quaker Internacional.

Artículo traducido por: Ing. Philip Dyck Sudermann y Dr. José J. Salmerón Zamora, Investigadores del CESICH, INIFAP.
CUADRO 1. ESPECIFICACIONES DE GRANO PARA FABRICATION DE HOJUELAS.

<table>
<thead>
<tr>
<th>ESPECIFICACIONES</th>
<th>UNIDAD O PORCENTAJE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso hectolítrico</td>
<td>474 gr/litro</td>
</tr>
<tr>
<td>Avena pura (SCO)</td>
<td>96.0 %</td>
</tr>
<tr>
<td>Porcentaje de cebada</td>
<td>0.9 %</td>
</tr>
<tr>
<td>Daño por calor</td>
<td>0.1 %</td>
</tr>
<tr>
<td>Material extraño</td>
<td>1.5 %</td>
</tr>
<tr>
<td>Humedad</td>
<td>13.0 %</td>
</tr>
<tr>
<td>Excrementos (roedores o pájaros)</td>
<td>0</td>
</tr>
<tr>
<td>Residuos</td>
<td>0</td>
</tr>
</tbody>
</table>

*Pesticidas, rodenticidas, herbicidas, químicos y olores objetables.

En el Cuadro 2, se dan las especificaciones mínimas para la Compañía Quaker en los Estados Unidos.

La prueba de ácidos grasos libres es llevada a cabo en el producto elaborado (no en la compra del grano crudo); niveles más altos de los especificados pueden causar la decoloración del grano así como un sabor extraño. El alto porcentaje de ácidos orosos libres también reduce el tiempo disponible para efectuar su venta antes del enraicimiento del grano, por esta razón la Compañía Quaker prefiere grano de cosechas recientes.

Como ustedes podrán observar las normas indicadas en el Cuadro 2, son bastante rígidas, pero también es importante recordar que toda esta avena se utiliza para consumo humano.
CUADRO 2. ESPECIFICACIONES PARA COMPRA DE GRANO POR LA COMPAÑÍA QUAKER.

<table>
<thead>
<tr>
<th>ESPECIFICACIONES</th>
<th>UNIDAD O PORCENTAJE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso hectolitrico</td>
<td>424.0 gr/lt mínimo</td>
</tr>
<tr>
<td>Avena pura (SCO)</td>
<td>94.0% mínimo</td>
</tr>
<tr>
<td>Otros granos - Cebada</td>
<td>1.5% máximo</td>
</tr>
<tr>
<td>Humedad</td>
<td>13.0% máximo</td>
</tr>
<tr>
<td>Material extraño</td>
<td>3.0% máximo</td>
</tr>
<tr>
<td>Daños por calor</td>
<td>0.3% máximo</td>
</tr>
<tr>
<td>Otros cereales - Trigo</td>
<td>1.0% máximo</td>
</tr>
<tr>
<td>*Acidos grasos libres</td>
<td>5.0% máximo</td>
</tr>
</tbody>
</table>

*Como un porcentaje del total de grasas.

Además deben satisfacerse las normas del Departamento de Agricultura de los Estados Unidos (U.S.D.A.) y de la Administración de Alimentos y Drogas.

CARACTERÍSTICAS DESFABLES EN LA OBTENCIÓN DE NUEVAS VARIEDADES.

Las siguientes características son parámetros importantes para tomar en cuenta en la formación de nuevas variedades de avena en Canadá, algunas como el color de la cáscara son solamente preferencias del consumidor, es importante ajustarse a dichas normas para que las avenas sean aceptadas.

Características del grano.

Color. - El grano limpio (sin cáscara) debe ser de color blanco o cremoso.

Llano. - Porcentaje de grano que se selecciona de una criba de 6/54" (mínimo el 50%).
Delgado.- Un 2° máximo cuando la avena atraviesa una criba por una abertura de 1.6 mm en el rallador de precisión del laboratorio.

Peso.- Mínimo 28 gramos por 1,000 gramos.

Peso hectolitrico.- Mínimo 474 gramos por litro o el equivalente a las mejores variedades testigos.

Descascarado.- El porcentaje de grano descascarado durante la cosecha debe ser el 5% máximo.

Ouebrado.- Durante la elaboración de hojuelas debe ser igual o menor que los mejores testigos de la región.

Características de la cáscara.

Color.- Debe ser blanca o amarilla, cáscaras de color bronceado no son deseables, sin embargo, son aceptadas por la industria si el porcentaje del grano sin cáscara es alto y su color es aceptable.

Porcentaje.- Se prefiere un rango del 20 al 26%, pero es aceptable máximo un 30%.

Otras características.

Sabor.- El sabor característico de la avena limoia. Sin aromas desagradables o sabores incipientes.

Proteína.- Un mínimo de 13% en relación a base seca (N x 6.25).

Aceite.- Un máximo de 10% en relación a la base seca.

Beta glucanos.- No se han hecho recomendaciones aún. Sin embargo, es importante hacer notar que muchas variedades tienen diferentes porcentajes
en las capas de salvado y subsecuentemente en el porcentaje de beta glucanos. Con el incremento en el consumo de salvado (fibra) de avena en la dieta humana es deseable aumentar el porcentaje de beta-glucanos.

Lípasa/Lypoxygenasa.- No hay recomendaciones en la actualidad, es importante recordar que mientras los mejoradores pueden efectuar cambios en el porcentaje de proteína, resistencia a enfermedades y capacidad de rendimiento en contraparte, no es tan fácil cambiar las características químicas de la avena. Es importante que la industria de elaboración de alimentos identifique las características deseables y se las trasmita a los mejoradores de modo que puedan hacerse los cambios correspondientes en los programas de mejoramiento.

Los fitomejoradores tradicionales y las procesadoras de productos no podrán lograr los adelantos esperados si se consideran la cooperación y los adelantos de la biotecnología en la integración de las características deseables.

Durante el final de la década de los sesenta e inicios de los setenta se prestó considerable atención en aumentar el nivel de proteína en los cereales, antes como hoy podemos decir que la avena tiene el porcentaje de proteína más alto de todos los cereales.

En los Estados Unidos el grano de avena entero tiene un promedio de proteína de 12.5% y descascarado de 12%, en comparación con maíz que tiene 8%; cebada 10%; trigo y arroz 11% y sorgo grano 9%, si lo comparamos con una leguminosa como la soya ésta tiene un promedio de 34% en proteína. Cualquier persona que utilice avena para alimentación humana o animal deberá realizar un análisis de proteína para obtener sus propias determinaciones de calidad; lo anterior es muy importante para el ganadero, para formular sus raciones alimenticias y necesidades suplementarias de proteína.
Las variedades de avena así como también las prácticas culturales realizadas en el campo, pueden afectar el contenido de proteína. Aunque muchas características nutricionales y químicas son inherentes a la variedad o al ambiente, es importante recordar que algunos factores como proteína pueden ser afectados por técnicas de producción.

Rendimiento de grano.

En el Cuadro 3 se presentan rendimientos promedios de grano de avena con alta tecnología.

Es importante recordar que a medida que se incrementaron los rendimientos de avena en el concurso, generalmente se aumentó el porcentaje de proteína en avena así como también todos los nutrientes digestibles y el uso de nitrógeno por hectárea.

<table>
<thead>
<tr>
<th>PROMEDIO</th>
<th>RENDIMIENTO (TON/HA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nacional (E.U.)</td>
<td>2.40</td>
</tr>
<tr>
<td>Estado de Iowa</td>
<td>2.67</td>
</tr>
<tr>
<td>Proyectos F.F.A.*</td>
<td>4.30</td>
</tr>
<tr>
<td>Ensayos Universidad de Iowa</td>
<td>4.40</td>
</tr>
<tr>
<td>F.F.A.</td>
<td>7.26</td>
</tr>
</tbody>
</table>

*Concurso de alta producción patrocinado por Compañía Quaker en cuatro estados centrales del Norte de E.U. (F.F.A.- Club de Jóvenes Futuros Agricultores de América).

Hay una correlación directa entre la cantidad de nitrógeno aplicado y el porcentaje de proteína de avena (con la condición de que el ambiente como preci-
pitación y temperatura sean favorables). Sin embargo, muchos productores tienen miedo de aplicar nitrógeno debido al incremento del acame.

Si se fertiliza la avena con nitrógeno, recomendamos suplementar con fósforo y potasio.

Como una regla empírica para obtener un bushel de avena (32 libras o 14.5 kg de avena) se necesitarán 1.3 libras de nitrógeno (594 gr), 0.4 de P₂O₅ (182 gr) y 0.2 libras de K₂O (549 gr).

Para obtener altos rendimientos y un cultivo sano son necesarios los elementos esenciales como nitrógeno, fósforo y potasio, así como otros diez elementos nutritivos como son calcio, magnesio, azufre, boro, cloro, cobre, manganeso, molibdeno y zinc.

En los Cuadros 4, 5, y 6 se muestran las recomendaciones de nitrógeno, fósforo y potasio que se utilizan en los estados centrales del Norte de los Estados Unidos.

CUADRO 4. RECOMENDACIONES DE NITROGENO EN EL CENTRO NORTE DE LOS ESTADOS UNIDOS.

<table>
<thead>
<tr>
<th>META EN RENDIMIENTO</th>
<th>NITRÓGENO REQUERIDO*</th>
</tr>
</thead>
<tbody>
<tr>
<td>TON/HA</td>
<td>KG/HA</td>
</tr>
<tr>
<td>1.5</td>
<td>59.0</td>
</tr>
<tr>
<td>2.2</td>
<td>88.6</td>
</tr>
<tr>
<td>3.0</td>
<td>118.0</td>
</tr>
<tr>
<td>3.7</td>
<td>148.0</td>
</tr>
<tr>
<td>4.4</td>
<td>177.0</td>
</tr>
</tbody>
</table>

* La dosis de nitrógeno por aplicar es igual a valor del cuadro, menos el contenido de nitratos en el suelo hasta una profundidad de 61 cm.
CUADRO 5. RECOMENDACIONES DE FOSFORO EN EL CENTRO NORTE DE LOS ESTADOS UNIDOS.

<table>
<thead>
<tr>
<th>META EN RENDIMIENTO (TON/HA)</th>
<th>ANALISIS DE FOSFORO EN EL SUELO KG/HA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MUY BAJO</td>
</tr>
<tr>
<td></td>
<td>0-6 (3-4)</td>
</tr>
</tbody>
</table>

kg P₂O₅/ha recomendado*

1.5
26
25-21
11
0
0

2.2
36
34-27
11
0
0

3.0
47
43-34
15
0
0

3.7
58
52-39
17
0
0

4.4
70
62-46
19
0
0

*Las cantidades recomendadas son para el "centro" de cada rango de la prueba.

CUADRO 6. RECOMENDACIONES DE POTASIO EN EL CENTRO NORTE DE LOS ESTADOS UNIDOS.

<table>
<thead>
<tr>
<th>META EN RENDIMIENTO (TON/HA)</th>
<th>ANALISIS DE POTASIO EN EL SUELO KG/HA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BAJO</td>
</tr>
<tr>
<td></td>
<td>0-112 (56)</td>
</tr>
</tbody>
</table>

K₂O/ha recomendado*

1.5
44
28
0
0

2.2
66
43
0
0

3.0
89
57
19
0

3.7
111
72
24
0

4.4
112
86
28
0

*Las cantidades recomendadas son para el centro de cada rango de prueba.
En el proceso editorial de la presente publicación colaboraron las siguientes personas del CESICH:

Comité Editorial CESICH

M.C. Sergio Ramírez Vega
Ing. Roberto Gutiérrez González
M.C. Manuel R. Ramírez Legarreta
M.C. Pablo Fernández Hernández
Dr. José Juán Salmerón Zamora

Difutec

Ing. Roberto Gutiérrez González Coordinación de producción-edición
Alejandro H. Sotelo Chávez Dibujo y diseño portada
Isidra Palacios Estrada Dactilografía
Martha I. Valverde Flores Dactilografía

Esta publicación se terminó de imprimir en el mes de enero de 1989 en los talleres gráficos del Campo Experimental "Sierra de Chihuahua" y su tiraje constó de 300 ejemplares.
Asociación de Productores de Aves
"Sierra de Chihuahua"
ITa 24