PRODUCCIÓN DE FORRAJES Y NOGAL CON RIEGO POR GOTEÓ SUBTERRÁNEO

SECRETARÍA DE AGRICULTURA, GANADERÍA, DESARROLLO RURAL, PESCA Y ALIMENTACIÓN
INSTITUTO NACIONAL DE INVESTIGACIONES FORESTALES, AGRÍCOLAS Y PECUARIAS
CENTRO DE INVESTIGACIÓN REGIONAL NORTE-CENTRO
CAMPO EXPERIMENTAL DELICIAS

Publicación especial No. 7

Diciembre del 2001
Producción de forrajes y nogal con riego por goteo subterráneo

Mario Berzoza Martínez1
Noé Chávez Sánchez2
Javier Hernández Carillo3

M.C. Investigadores en 1relación agua-suelo-planta-atmosfera, 2matemáticas aplicadas y 3uso y manejo del agua

Cedel-Inifap
Producción de forrajes y nogal con riego por goteo subterráneo
PRODUCCIÓN DE ALFALFA CON RIEGO POR GOTEÓ SUBTERRÁNEO

Mario Berzoza Martínez
Noé Chávez Sánchez

CONTENIDO

Producción de alfalfa con riego por goteo subterráneo............... 5
Mario Berzoza Martínez y Noé Chávez Sánchez

Producción de maíz forrajero con riego por goteo y gravedad en la región de Delicias, Chihuahua.. 15
Noé Chávez Sánchez y Mario Berzoza Martínez

Respuesta del nogal pecanero en producción al riego por goteo.... 20
Javier Hernández Carrillo

INTRODUCCIÓN

La alfalfa es el cultivo forrajero más importante del país, por lo que es llamada la "reina de los forrajes". Tiene una excelente calidad nutritiva y su siembra es importante en el mejoramiento y conservación de los suelos, por la capacidad natural que tiene para aportar nitrógeno. En el ámbito nacional existen establecidas más de 250 mil ha con riego, mientras que en el estado de Chihuahua se tienen cerca de 45 mil, de las cuales alrededor de 18 mil corresponden a la región de Delicias, Chih.

La alfalfa es un cultivo estratégico para la producción de leche y carne en el país; sin embargo, se obtienen rendimientos bajos (del orden de 10 a 13 ton/ha de materia seca de forraje) y se hace una aplicación excesiva de agua, ya que se suministran láminas de riego que fluctúan de 150 a 170 cm anuales. Esto originado por el tipo, diseño y manejo del sistema de riego. Al implementar nuevas tecnologías, como los métodos presurizados de riego se hace un manejo eficiente del sistema y se ofrece una alternativa tecnológica para hacer más sustentable este cultivo.

Se ha reportado que en la alfalfa existe autotoxicidad o alelopatía cuando se siembra en el mismo terreno inmediatamente después de que se elimina un alfalfar viejo; esto se debe a la liberación de compuestos tóxicos durante la descomposición de los residuos del cultivo anterior los cuales disminuyen el porcentaje de

Ing. M.C. Investigadores del programa 1 Relación Agua-Suelo-Planta-Atmosfera y 2 Matemáticas aplicadas del Campo Experimental Delicias. CIRNOC-INIFAP-SAGARPA.
germinación de la semilla y el vigor de las plántulas emergidas. Para evitar esto, se recomienda establecer un cultivo anual antes de volver a establecer alfalfa en el mismo terreno (Jennings y Nelson, 1998)

Este forraje puede sembrarse en cualquier época del año, aunque para la región norte-centro de México, el periodo óptimo es en los meses de octubre y noviembre. El establecimiento fuera de este periodo tiene que ser apoyado por un programa de control de maleza y muestreo detallado de la humedad del suelo.

Del total de la superficie establecida, entre el 5 y el 7% se irrigan con tecnología de riego presurizado, utilizando diferentes modalidades por aspersión y recientemente el riego por goteo subterráneo; el resto se riega con tecnología de gravedad a través de melgas y/o corrugaciones.

ANTECEDENTES

En alfalfa, el riego por goteo subterráneo (RGS) ha sido investigado por Phene de 1991 a 1995 en California E.U.A.; Berzoza y Chávez de 1998 a 2001 en Delicias, Chihuahua; y Rivera y colaboradores durante 2000 y 2001 en la Comarca Lagunera, entre otros. En todos estos casos se ha tratado de desarrollar una guía para mejorar las prácticas de manejo bajo este sistema de riego. Cada investigador evaluó aspectos diferentes de este tipo de sistema; Phene (1999) estudió diversas líneas regantes, profundidades y separación de las mismas, su efecto en la calidad y producción del forraje; por su parte Rivera y colaboradores (2001) enfocaron los estudios a la obtención de una función de producción bajo este sistema de riego. Berzoza y Chávez (2000) establecieron una parcela demostrativa en la que incluyeron profundidad de líneas regantes, separación de las mismas y variedades de alfalfa. En el presente documento se presentan los resultados y avances de estos trabajos.

CARACTERÍSTICAS DEL RIEGO POR GOTEO SUBTERRÁNEO

El RGS es el sistema que utiliza agua filtrada, conducida a baja presión a través de tuberías de PVC hasta las laterales o regantes de polietileno y porta emisores, las cuales son enterradas a una profundidad entre 40 y 70 centímetros dependiendo de las características del suelo y tipo de emisor. En suelos arenosos se trabaja a menores profundidades que en suelos arcillosos. Actualmente se dispone en el mercado de cintillas y tuberías con gotero integrado, con calidad suficiente para garantizar su perfecto y fiable funcionamiento en cualquier circunstancia.

Los motivos o ventajas que justifican el enterrar las laterales portaemisores, son:

- Aumento en la eficiencia del riego
- Mejor distribución de nutrientes
- Reducción de la presencia de malas hierbas
- Disminución de enfermedades fungosas
- Facilita el laboreo del suelo
- Permite el empleo de aguas tratadas
- Se evitan problemas de vandalismo
- Mayor durabilidad de las tuberías

Actualmente el RGS localizado, está ampliamente difundido en multitud de cultivos y superficies ajardinadas en todo el mundo. En USA hay más de 25,000 has, en España más de 6,000 y está en expansión en diversos países.

INSTALACIÓN DE UN RGS

La planificación de un sistema de RGS es muy similar al de una instalación de riego por goteo superficial, aunque es importante considerar algunos aspectos fundamentales para evitar problemas
que puedan presentarse. En primer lugar debe elegirse un gotero fiable, de la más alta calidad y con un diseño específico que resista a las obstrucciones por deposición de partículas en el laberinto del mismo. Por lo anterior se recomienda usar aquellos que tengan laberintos de gran sección de paso y con régimen turbulento. Es común el empleo de goteros autocompensados o líneas de goteros específicamente desarrollados para esta aplicación. Es importante determinar la distancia adecuada entre emisores y la profundidad de enterrado, buscando una banda de humedad continua que cubra bien el sistema radical de las plantas. Para alfalfa se recomienda de 40 a 70 cm de profundidad y de 80 a 100 cm de separación.

Un aspecto importante respecto a las laterales de riego es que requieren de un lavado más continuo que el sistema tradicional. Esto se puede realizar abriendo la parte terminal de cada línea, aunque es muy tardado. También se puede diseñar una tubería de lavado, la cual se instala en la parte terminal de las líneas regantes, agrupando así gran parte de la sección, la cual se lava mediante la apertura de una válvula o mediante la instalación de válvulas drenantes. Es indispensable instalar una válvula de aire al inicio de la tubería distribuidora para evitar que los goteros se obstruyan por efecto de la succión.

La red general de conducción y distribución es muy similar a la de una habitual, mientras que en el cabezal se deben cuidar detalles como el sistema de filtrado, el cual debe ser autolimpiante, con un control automático de lavado que funciona por diferencial de presión, volumen de agua regado, tiempo de regado y la combinación de cualquiera de estos factores. Las características de los filtros y la mayor o menor complejidad del sistema de filtrado, dependerá de la cantidad y tipo de impurezas que estén presentes en el agua de riego. Es indispensable instalar un caudalímetro en la red general, para llevar un control de los caudales de riego por sector o válvula y detectar posibles obstrucciones.

Finalmente, es recomendable un sistema para el control de la fertirrigación que permita trabajar con soluciones nutritivas y controlar el pH a nivel óptimo (pH = 6) a través de la dosificación de ácido nítrico, fosfórico o sulfúrico, con el fin de mejorar la disponibilidad de nutrimentos para la planta y evitar precipitados calcáreos o de fertilizantes en los emisores.

RESULTADOS

a) **Selección de la línea regante.**
Trabajos realizados por diferentes investigadores, concluyen que las cintas de riego de flujo laminar no deben utilizarse, en cambio se recomiendan las de régimen turbulento con descargas que van de 1 a 3 L/h por gotero, en calibres de 0.1 a 0.4 mm (espesor de la pared), con presiones de operación de 0.4 a 0.8 kg/cm² (6 a 12 libras/pulgada cuadrada) y una separación entre goteros no mayor de 40 cm en cultivos anuales y de 100 cm en frutales (Mahuenda, 1999; Berzoza y Chávez, 2000; Phene, 1999 y Ruiz, 1999).

En la actualidad existen en el mercado diferentes cintas y mangueras con goteros integrados que desde el punto de vista hidráulico, operan satisfactoriamente, pero con diferentes especificaciones en espesor de la pared, separación entre emisores, sensibilidad al taponamiento, presión de trabajo, gasto y facilidad de limpieza y mantenimiento. Por lo anterior, es conveniente instalar goteros que hayan sido desarrollados y ensayados para cada cultivo en particular.

b) **Colocación y separación de la línea regante.**
En alfalfa, la línea regante debe ser colocada a menos de 40 cm de profundidad para evitar la compactación del suelo y así la
reducción en el gasto, y con los emisores hacia arriba, para prevenir obstrucciones. La colocación se realiza por medios mecánicos, a través de un arado subsuelo, al cual se le adapta un carrete para colocar los rollos de manguera y un pico topo para que al desplazarse vaya dejando la línea regante instalada a la profundidad deseada. La separación entre las líneas portaemisores debe ser de 80 a 120 cm, dependiendo del tipo de suelo y del emisor seleccionado.

c) Siembra.
Una vez colocada la línea regante, así como la tubería de lavado, se procede a realizar la siembra de la alfalfa de la manera tradicional, eliminando el corrugado y bordeo. Para la germinación de la semilla es necesario aplicar el riego por aspersión, el cual se empleará en los primeros 70 a 90 días. El sistema más recomendable es el Power Roll, el cual facilita que sea conectado en las purgas de la tubería distribuidora. Una vez establecida la planta, se inician los riegos con el sistema de goteo subterráneo.

d) Tiempo y frecuencia de riego.
Estos dependerán de la lámina de riego que se quiera aplicar; sin embargo, para aprovechar completamente los beneficios del RGS se recomiendan a intervalos no mayores de 3 días, independientemente del gasto del emisor. La cantidad o volumen de agua por aplicar se puede estimar con la siguiente fórmula:

\[\text{Vol} = K_c \times E_{tr} \times A \]

Donde:
- \(\text{Vol} \) = Volumen de agua por aplicar (m³)
- \(K_c \) = Coeficiente de desarrollo del cultivo (Para alfalfa es de 0.5 en brotación, 0.8 en desarrollo y 1.0 en maduración).
- \(E_{tr} \) = Evapotranspiración potencial o de referencia. (m) Este valor se obtiene de la estación climatológica o se puede estimar del tanque evaporímetro tipo A.
- \(A \) = Área o superficie a regar (m²)

En caso de no disponer del dato de la evapotranspiración potencial, para la estimación del volumen de agua por aplicar se recomienda emplear la evaporación de un tanque evaporímetro tipo A, aplicando el 64% del total evaporado en el periodo a considerar. Sin embargo, con esta metodología se sobrestima el requerimiento en las primeras etapas y al final se subestiman (Rivera y colaboradores, 2001).

e) Eficiencia de uso de agua y producción.
Las experiencias regionales y en otras zonas productoras de alfalfa indican que con el RGS, en comparación con el riego por gravedad, pueden obtenerse incrementos en el rendimiento de hasta un 45% y reducir el consumo de agua en el ciclo de 150 a 170 cm a 115 a 130 cm. Los resultados muestran que en la región de Delicias, Chihuahua, se obtuvo un rendimiento de 19.6 ton/ha/año de materia seca de forraje (106.7 ton/ha/año de materia verde) con una lámina total aplicada de 120 cm. Con esto se estima que el uso eficiente del agua fue 1.35 kg./m³ de agua aplicado. En el Valle Imperial, en California, E.U.A., en una alfalfa de tres años, con una lámina total de 136 cm se obtuvo un rendimiento de 18.3 ton/ha/año de materia seca (96.2 ton/ha/año de materia verde), obteniendo una eficiencia de uso de agua de 1.11 Kg/m³ (Phene, 1999).

En la Comarca Lagunera con una lámina de 112 cm, se obtuvo una producción de 20.1 ton/ha/año de materia seca (107.3 ton/ha/año de materia verde) y una eficiencia de 1.5 Kg/m³, en el primer año de establecida. Bajo las condiciones de riego rodado, las producciones promedian en el segundo y tercer año de 12.5 a 14.8 ton/ha de materia seca con una lámina de agua total anual que fluctúa entre 150 y 170 cm, obteniendo una eficiencia de uso de agua de 0.85 kg./m³.
En las regiones de Delicias, Chih y Valle Imperial, California, se instalaron líneas regantes con goteros integrados. La separación entre emisores fue de 40 cm y entre líneas regantes de 90 a 100 cm; se colocaron a una profundidad de 40 a 45 cm y tuvieron un gasto de 1.7 a 2.0 l/h por emisor y el espesor de la pared de la manguera varió de 0.31 a 1.0 mm. En La Laguna se instaló una cintilla de 0.375 mm de espesor de pared, con goteros espaciados a 20 cm, con un gasto de 0.9 l/h, con separación de líneas regantes a 70 cm y con una profundidad de 30 cm.

f) Calidad del forraje.
Los resultados obtenidos en riego por goteo subterráneo en el Valle Imperial California muestran que los componentes de calidad de la alfalfa se incrementan con respecto a los obtenidos bajo la condición de riego por gravedad como se ilustran en el cuadro 1.

<table>
<thead>
<tr>
<th>Factor de Calidad</th>
<th>Riego Rodado</th>
<th>Riego por goteo subterráneo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proteína cruda (%)</td>
<td>18.37</td>
<td>29.38</td>
</tr>
<tr>
<td>Fibra cruda (%)</td>
<td>36.55</td>
<td>30.14</td>
</tr>
<tr>
<td>Fibra cruda modificada (%)</td>
<td>33.46</td>
<td>33.21</td>
</tr>
<tr>
<td>Nutrientes digestibles totales (%)</td>
<td>51.90</td>
<td>52.7</td>
</tr>
<tr>
<td>Energía Neta Estimada</td>
<td>422.00</td>
<td>472.57</td>
</tr>
</tbody>
</table>

g) Mantenimiento y limpieza del sistema de riego.
En la instalación de un sistema de riego por goteo subterráneo es importante dejar los extremos de las líneas regantes accesibles para poder realizar lavados de estas tuberías, o en su defecto instalar una tubería de lavado. La limpieza debe realizarse con una frecuencia de tres a cuatro veces por mes para evitar la acumulación de sedimentos en los extremos de las líneas regantes. Adicionalmente, se pueden limpiar con cloro y ácido fosfórico. Debido a que no se controla visualmente el funcionamiento de los emisores por estar enterrados, conviene aplicar el herbicida Treflán (trifluralin) en los cultivos que este permitida su aplicación, para evitar la introducción de raíces en los emisores.

CONCLUSIONES
- Las líneas regantes deben estar en el rango de 0.3 a 1.0 mm de espesor de la pared, con gastos de 1.5 a 2.0 l/h por gotero, de flujo turbulento y con separación entre emisores de 30 a 50 cm.
- En suelos regionales de textura media a pesada, las líneas regantes deben ser enterradas de 40 a 60 cm y con una separación de 80 a 100 cm entre ellas.
- Las experiencias de trabajos de investigación y demostrativos, indican que el riego por goteo subterráneo proporciona incrementos en la producción, en la eficiencia de uso de agua, así como en la calidad del forraje.

LITERATURA CITADA

PRODUCCIÓN DE MAÍZ FORRAJERO CON RIEGO POR GOTEO Y GRAVEDAD EN LA REGIÓN DE DELICIAS, CHIHUAHUA.

Noé Chávez Sánchez¹
Mario Berzoza Martínez²

INTRODUCCIÓN

En México se cultivan bajo riego 6.2 millones de hectáreas, que representan el 20% de la superficie con potencial agrícola; de ellas, el 92% se riega con agua de gravedad y el 8% con riego presurizado. Con el manejo convencional, la eficiencia global de riego a nivel parcelario es del 45%, lo que muestra un pobre aprovechamiento del recurso agua (Peña y Guajardo, 1999).

En el estado de Chihuahua, el área de riego es de 360 mil hectáreas, de las cuales 157,700 tienen como fuente de abastecimiento de agua a las presas ubicadas en los distritos de riego, las 202,300 restantes son regadas con agua del subsuelo, que se extrae por medio de 7,282 pozos dedicados al uso agrícola exclusivamente (SAGAR-INIFAP, 1997).

El bajo volumen disponible de agua y el alto costo de extracción y mantenimiento del equipo, encarecen la producción y hacen necesario implementar tecnologías que permitan mejorar la eficiencia en el uso del agua, la infraestructura hidráulica y recursos del medio físico, acordes a las circunstancias de la región y a las necesidades de los productores.

Ing. M.C. Investigadores del programa ¹Matemáticas aplicadas y ²Relación Agua-Suelo-Planta-Atmosfera del Campo Experimental Delicias. CIRNOC-INIFAP-SAGARPA.
OBJETIVOS
El presente trabajo se estableció para evaluar la eficiencia del uso del agua y de los fertilizantes en tres híbridos de maíz para forraje bajo riego por goteo y gravedad.

METODOLOGÍA
Se estudiaron los híbridos de maíz Jaguar, Pantera y Pioneer 3002W, irrigados por goteo y gravedad. En el riego por goteo se usó manguera con goteo integrado, a una separación entre goteos de 40 cm y un gasto por goteo de 1.15 l/hora. En ambos casos el cultivo se estableció en surcos con una separación de 80 cm y una densidad de siete plantas por metro lineal (87,500 plantas/ha).

En todos los tratamientos se aplicó la dosis de fertilización 140-70-00; en aquellos de riego por gravedad antes del primer riego de auxilio, se aplicó el total del fósforo y el 50% del nitrógeno, y el 50% restante se aplicó antes del segundo riego de auxilio, usando como fuentes fosfato monoamónico y urea. En los tratamientos de goteo los fertilizantes se aplicaron a través del sistema de riego; el fósforo se aplicó como ácido fosfórico, de la 2ª a la 4ª semana después de la emergencia; el nitrógeno se fraccionó en cinco aplicaciones durante la 2ª a la 6ª semanas después de la emergencia, usando urea como fuente.

En riego por goteo se aplicaron dos riegos por semana, determinando la cantidad de agua a aplicar mediante la cuantificación de la evapotranspiración, por medio de una estación climatológica automatizada. El agua utilizada es de clase C3S1, lo cual indica que es salina, rica en sales de sulfatos y con cierta cantidad de sodio, motivo por el cual se aplicó una lámina mayor en un 20%, de acuerdo al requerimiento de lavado. En los tratamientos de riego por gravedad se aplicaron cinco riegos de auxilio; en los dos primeros se usó agua de la presa y en los últimos tres agua de pozo.

RESULTADOS
Durante el desarrollo del experimento se presentaron varias lluvias, cuatro de ellas fueron superiores a 11 mm y en total la precipitación fue de 93.2 mm. Dicha lluvia uniformizó la humedad y no permitió mostrar el efecto de cada tratamiento de riego.

Los resultados obtenidos se muestran en el cuadro 1. A la lámina de riego de cada método se le agregó la precipitación, por lo que se obtiene una lámina total de 73.2 y 82.3 cm para el tratamiento de goteo y gravedad, respectivamente, lo cual muestra una diferencia de 9.1 cm en el agua aplicada. Se obtuvo una producción de materia seca de 17.46 y 18.71 ton/ha para el método de goteo y gravedad respectivamente, obteniéndose una diferencia de 1.25 ton/ha, la cual no fue significativa. Por otra parte, la eficiencia fue de 2.39 y 2.27 kg de materia seca producida por cada metro cúbico de agua aplicado, en riego por goteo y gravedad respectivamente, donde se observó un comportamiento inverso al rendimiento, debido a la menor agua aplicada en riego por goteo; sin embargo, no es una diferencia considerable debido al efecto de la lluvia y el agua aplicada.

Cuadro 1. Resultados obtenidos en el experimento de maíz forrajero con riego por goteo y gravedad en la región de Delicias Chih. CEDEL 2001.

<table>
<thead>
<tr>
<th>TRATAMIENTO</th>
<th>AGUA APLICADA</th>
<th>RENDIMIENTO</th>
<th>EFICIENCIA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lamina en cm</td>
<td>MATERIA SECA</td>
<td>Mat. seca/m²_agua</td>
</tr>
<tr>
<td>MÉTODO DE RIEGO</td>
<td></td>
<td>ton/ha</td>
<td></td>
</tr>
<tr>
<td>GOTE</td>
<td>73.2</td>
<td>17.46</td>
<td>2.39</td>
</tr>
<tr>
<td>GRAVEDAD</td>
<td>82.3</td>
<td>18.71</td>
<td>2.27</td>
</tr>
<tr>
<td>HÍBRIDO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PANTERA</td>
<td>19.35</td>
<td></td>
<td>2.50</td>
</tr>
<tr>
<td>JAGUAR</td>
<td>17.90</td>
<td></td>
<td>2.29</td>
</tr>
<tr>
<td>PIONEER 3002W</td>
<td>17.01</td>
<td></td>
<td>2.19</td>
</tr>
</tbody>
</table>
El híbrido Pantera superó ligeramente en producción a Jaguar y Pioneer 3002W, y en cuanto a eficiencia en el uso del agua, se observa un comportamiento similar. Las diferencias en estas dos variables no son estadísticamente significativas. En experimentos de maíz para grano con riego por goteo, donde se estudiaron intervalos de riego antes y después de la floración, se obtuvo una diferencia en la producción del 11% entre el tratamiento de riego cada tres días y el de una frecuencia de siete días. Cuando el riego se aplicó en intervalos semanales hasta antes de la floración y después cada tres días, el rendimiento se incrementó en un 20% (Vuelvas y colaboradores 1999).

El presente trabajo es de los primeros en comparar los dos métodos de riego en la región y de acuerdo a los resultados obtenidos se observa que es necesario diseñar experimentos de riego por goteo, donde se modifiquen los factores de coeficiente de cultivo, intervalos de riego, hileras por cama, separación entre líneas de riego y el gasto de los emisores.

CONCLUSIONES

☐ Tanto en los métodos de riego, como entre los híbridos estudiados, se obtuvo una ligera diferencia en la producción.

☐ Con el riego por goteo se obtuvo una eficiencia en el uso del agua mayor en un 11%, en relación al riego por gravedad.

☐ Es necesario realizar más trabajos de riego por goteo, donde estudien los factores de densidad de plantas, arreglo topológico, colocación de la cinta, láminas y frecuencias de riego.

LITERATURA CITADA

RESPUESTA DEL NOGAL PECANERO EN PRODUCCIÓN AL RIEGO POR GOTEÓ

Javier Hernández Carrillo

INTRODUCCIÓN
El estado de Chihuahua es el principal productor de nuez en el país, ya que cuenta con una superficie establecida de 35,710 ha de nogal, de las cuales 9,174 ha están en desarrollo y 26, 536 ha en producción (SAGARPA 2001). De la superficie total el 52.4% es irrigada con agua de pozos profundos, de la cual 2,273 ha tienen riego por goteo (FIRCO, 2000). En este método de riego los estudios de diagnóstico indican que la problemática técnica que hay que atender es el manejo operativo de CUÁNTO Y CUÁNDO REGAR (Hernández, 1999).

ANTecedentes

Requerimientos hídricos
En las regiones productoras de nuez de Texas y Nuevo México el consumo de agua por los nogales en producción durante la estación de crecimiento varía de 68.0 cm hasta 139.7 cm (Madden, 1974; Daniells, 1982; Thomson, 1983; Miyamoto, 1983; Mc Eachern, 1995; Stein y Worthington, 1997); mientras que en la región agrícola de Delicias, Chih. es de 131.8 cm (Hernández, 1990), y en la región Lagunera de 112.0 cm a 125.0 cm (Mendoza y colaboradores, 1998). Así mismo, el consumo de agua diaria para árboles en producción, puede variar de 0.12 a 0.86 cm por día, dependiendo del tamaño de los árboles y la época del año. (Miyamoto y colaboradores 1996).

Calendarización del riego
Para que un calendario de riegos se aplique eficientemente, debe de tomarse en cuenta la humedad disponible en el suelo y la velocidad de evaporación del agua en un tanque evaporímetro. En riego por goteo el método del tanque evaporímetro es el más usual cuando se riega a diario (Daniells, 1981). Es importante mencionar que el consumo de agua de los nogales en producción es proporcional al agua evaporada de un tanque evaporímetro tipo "A"; en mayo y septiembre los árboles consumen cuando mucho el 50% del agua evaporada, en junio el 80%, en julio el 100% y en agosto el 90% (Stein y Worthington, 1997).

Periodos críticos del nogal
El nogal es muy susceptible a la falta de humedad, pues la deficiencia en el suelo al principio de la estación de crecimiento reduce la producción de hojas nuevas, que son esenciales para la producción de nuez (Mc Eachern 1995). El tamaño de la nuez está en función directa del contenido de humedad en el suelo, y esta es crítica en los meses de mayo, junio julio y principios de agosto, ya que es el periodo durante el cual el tamaño de la nuez es determinado. En la actualidad se conoce que la adecuada humedad en el suelo durante las dos primeras semanas del mes de septiembre, que es cuando la nuez está en su fase de llenado, da como resultado una buena calidad de la almendra (si se suministran 3.18 cm de agua por hectárea por semana durante este periodo). Por otra parte, si se mantiene al suelo con suficiente humedad hasta antes de que la nuez madure, se proporciona una condición muy propia para la apertura del ruezno (Miyamoto, 1983; Grant y otros, 1998; Mc Farland, 1997; Sparks, 1995; Mc Eachern, 1995).
OBJETIVOS
Maximizar la eficiencia de aplicación y aprovechamiento del agua en huertas de nogal en producción, que son manejadas con sistemas de riego por goteo.

MATERIALES Y MÉTODOS
Durante las estaciones de crecimiento 2000 y 2001, se experimentó en una sección de 2.36 ha de la huerta EL Maguey, en Delicias, Chih. que cuenta con árboles de nogal en producción de la variedad Western de 37 años de edad, con cuatro hileras de goteros por cada hilera de árboles, de 2.2 l/h de gasto y separados cada 70 cm, contando además con un tanque evaporímetro tipo "A". En el mes de febrero del año 2000 se realizaron estudios previos de planta del año anterior, así como de suelo, agua-suelo y se calibraron tensiómetros. Con los resultados de estos estudios se caracterizó a la huerta desde el punto de vista edáfico, condiciones de los árboles y se le dió seguimiento por ser de las más avanzadas en tecnología de manejo del agua. El riego fué a diario, en función de los factores de uso de agua (FUA), para el mes de marzo se usó el 40% de la evaporación del tanque evaporímetro, en abril y septiembre el 60%, en mayo y agosto el 70%, y en junio y julio el 80%. La humedad en el suelo, hasta 60 cm de profundidad, se muestreó con un tensiómetro (0-5 centímetros entre riegos); así mismo, durante las estaciones de crecimiento se cuantificó en cinco árboles la fenología y el crecimiento del brote y fruto, y en 11 de ellos el rendimiento de nuez y su calidad. Además, se midió diariamente la evaporación del tanque evaporímetro y se calcularon las horas y láminas de riego. La información obtenida se comparó entre años y se interpretó con base en otros estudios de riego.

RESULTADOS Y DISCUSIÓN
A continuación se indican los resultados obtenidos.

<table>
<thead>
<tr>
<th>Profundidad (cm)</th>
<th>Textura</th>
<th>*Psc (%)</th>
<th>**Pspmp (%)</th>
<th>***Dαg/cm³</th>
<th>Lámina de retención de humedad (cm)</th>
<th>Velocidad de infiltración básica (cm/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-30</td>
<td>Migajón arcillo arenoso</td>
<td>27</td>
<td>19</td>
<td>1.37</td>
<td>3.28</td>
<td>3.24</td>
</tr>
<tr>
<td>30-60</td>
<td>Migajón arcillo arenoso</td>
<td>28</td>
<td>20</td>
<td>1.36</td>
<td>3.26</td>
<td></td>
</tr>
<tr>
<td>60-90</td>
<td>Arcilla arenosa</td>
<td>34</td>
<td>25</td>
<td>1.30</td>
<td>3.51</td>
<td></td>
</tr>
</tbody>
</table>

TOTAL=10.05

*Porcentaje de humedad a capacidad de campo
**Porcentaje de humedad a punto de marchitez permanente
***Densidad aparente

Esta información indica que es un suelo de textura pesada, con alta capacidad de retención de la humedad y velocidad de infiltración de moderada a baja, por lo que requiere de dispositivos de riego de bajo gasto.

Cuadro 2. Resultados de la relación del AGUA, durante el periodo de estudio, CEDEL 2001.

<table>
<thead>
<tr>
<th>Año</th>
<th>Número de riegos</th>
<th>Tiempo riego (h)</th>
<th>Gasto de emisores por árbol (l/h)</th>
<th>Volumen total de agua por árbol (m³)</th>
<th>Lámina riego (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>158</td>
<td>602.50</td>
<td>145.34</td>
<td>87.532</td>
<td>60.80</td>
</tr>
<tr>
<td>2001</td>
<td>184</td>
<td>694.40</td>
<td>145.34</td>
<td>100.924</td>
<td>70.08</td>
</tr>
</tbody>
</table>
En este cuadro, se puede observar que durante el año 2001, se ministraron de 13.0 m3/árbol más que en el año 2000. Esto se debió a que en el período invernal se aplicaron 26 riegos que equivalen a una lamina de 9.3 cm, para contar con suficiente humedad antes de la brotación de los árboles.

<table>
<thead>
<tr>
<th>Año</th>
<th>Inicio de brotación</th>
<th>Inicio de polinización</th>
<th>Fin del endurecimiento de cascara</th>
<th>Inicio de la apertura del ruezno</th>
<th>Inicio de cosecha</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>24 Marzo</td>
<td>10 Abril</td>
<td>10 Julio</td>
<td>7 Agosto</td>
<td>21 Sep</td>
</tr>
<tr>
<td>2001</td>
<td>22 Marzo</td>
<td>16 Abril</td>
<td>11 Julio</td>
<td>20 Agosto</td>
<td>28 Sept</td>
</tr>
</tbody>
</table>

En el año 2001, la diferencia de 12 días más del período del inicio al fin de endurecimiento de cascara, que es el tiempo durante el cual se define el tamaño de la nuez, y que además influyó en que se prolongara la apertura del ruezno y la cosecha, probablemente se debió a una acción integral de los elementos meteorológicos durante ese periodo.

<table>
<thead>
<tr>
<th>Año</th>
<th>Longitud del brote (cm)</th>
<th>Longitud del fruto (cm)</th>
<th>Diámetro ecuatorial del fruto (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>11.01</td>
<td>5.00</td>
<td>2.75</td>
</tr>
<tr>
<td>2001</td>
<td>10.08</td>
<td>4.57</td>
<td>2.54</td>
</tr>
</tbody>
</table>

Se pudo observar que los crecimientos de brote y del fruto fueron ligeramente menores en el 2001, no obstante que se suministró más agua y 7.42 kg más de nitrógeno por hectárea que en el año 2000.

<table>
<thead>
<tr>
<th>Año</th>
<th>Producción total (kg)</th>
<th>Nuez buena (kg)</th>
<th>Nuez con ruezno (kg)</th>
<th>Nuez nacida (kg)</th>
<th>Nueces vanas (kg)</th>
<th>Nueces (kg)</th>
<th>Almendra (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>15.45</td>
<td>10.622</td>
<td>3.716</td>
<td>0.875</td>
<td>0.227</td>
<td>139</td>
<td>53.50</td>
</tr>
<tr>
<td>2002</td>
<td>15.34</td>
<td>13.656</td>
<td>1.277</td>
<td>0.204</td>
<td>0.209</td>
<td>139</td>
<td>55.69</td>
</tr>
</tbody>
</table>

| Dif. | 0.11 | 22.21% | 65.63% | 76.68% | 7.9% | 0.00 | 2.19% |

En el cuadro anterior se puede observar, que el rendimiento por árbol en los dos años de estudio es prácticamente igual. Sin embargo, en el año 2001 se incrementó la nuez buena en un 22.21%, se abatieron considerablemente las nueces con ruezno pegado y nacidas en un 65.63% y 76.68% respectivamente, y se mejoró en un 2.19% la almendra.

CONCLUSIONES

- La elección del método de riego por goteo en la huerta fue el adecuado, de acuerdo a las características físicas del suelo y específicamente a la velocidad de infiltración básica.

- Las láminas de riego total aplicadas, fueron menores de un 41.6% a un 49.7%, con respecto al riego de microaspersión y de un 46.0% a un 53 % con respecto al método de superficie, de acuerdo a los reportes de los diferentes estudios de riego.

- La etapa fenológica del inicio al fin de endurecimiento de la cáscara, se prolongó 12 días más en el año 2001, lo que desfasó la apertura del ruezno y la cosecha, en un semana con respecto al año 2000.

- En términos generales el crecimiento del brote y del fruto fueron, ligeramente menores en el año 2001.
El rendimiento promedio de nuez por árbol, fue prácticamente igual en ambos años de estudio, sin embargo en el 2001, se incrementó significativamente la nuez buena y se abatió considerablemente la nuez con ruezo pegado y la nuez nacida con un 22.21%, 65.63% y 76.68% respectivamente. Además se aumento en un 2.19% la calidad de la almendra.

LITERATURA CITADA

---------- 1990. Manejo de agua en el nogal pecanero (Carya illinoensis Koch) en producción, para la región de Delicias Chih. Memorias de la 10a reunión de nogaleros. Delicias, Chih.

Mendoza. S.F; Moreno, D.L; García, H.G y Rodríguez, C.A. 1998. Módulo de riego por microaspersión en nogal, CENID-RASPA, Memorias del VIII, Congreso Nacional de Irrigación.

Producción de forrajes y nogal con riego por goteo subterráneo se terminó de imprimir en diciembre del 2001, en Delicias, Chihuahua, México, en los talleres de Impresos PAYCAR (Tel. 474-70-76), con un tiraje de 500 ejemplares más sobrantes para su reposición.