CARACTERIZACIÓN CLIMÁTICA Y EDÁFICA DEL ÁREA DE ABASTECIMIENTO DEL INGENIO “EL DORADO”, CULIACÁN, SINALOA

CENTRO DE INVESTIGACIÓN REGIONAL NORTE CENTRO CAMPO EXPERIMENTAL PABELLÓN Pabellón de Artesa, Aje.

Publicación Especial Núm. 36

Noviembre de 2009
Directorio Institucional

SECRETARÍA DE AGRICULTURA, GANADERÍA, DESARROLLO RURAL, PESCA Y ALIMENTACIÓN
Lic. Francisco Javier Mayorga Castañeda
 Secretario
MC. Mariano Ruiz-Funes Macedo
 Subsecretario de Agricultura
Ing. Ignacio Rivera Rodríguez
 Subsecretario de Desarrollo Rural
Dr. Pedro Adalberto González Hernández
 Subsecretario de Fomento a los Agronegocios

INSTITUTO NACIONAL DE INVESTIGACIONES FORESTALES, AGRÍCOLAS Y PECUARIAS
Dr. Pedro Brajcich Gallegos
 Director General
Dr. Salvador Fernández Rivera
 Coordinador de Investigación, Innovación y Vinculación
Dr. Enrique Astengo López
 Coordinador de Planeación y Desarrollo
Lic. Marcel A. García Morteo
 Coordinador de Administración y Sistemas

CENTRO DE INVESTIGACIÓN REGIONAL NORTE CENTRO
Dr. Homaro Salinas González
 Director Regional
Dr. Héctor Mario Quiroga Garza
 Director de Investigación
Dr. José Verástegui Chávez
 Director de Planeación y Desarrollo
Lic. Jaime Alfonso Hernández Pimentel
 Dirección de Administración

CAMPO EXPERIMENTAL PABELLÓN
Dr. Alfonso Peña Ramos
 Director de Coordinación y Vinculación en Aguascalientes
CARACTERIZACIÓN CLIMÁTICA Y EDÁFICA DEL ÁREA DE ABASTECIMIENTO DEL INGENIO “EL DORADO”, CULIACÁN, SINALOA

José Luis RAMOS GONZÁLEZ
Investigador en el área de Protección de Cosechas Campo Experimental Pabellón

Alma Delia BÁEZ GONZÁLEZ
Líder del Proyecto de Red de Estaciones Agrometeorológicas en Zonas Cañeras de México y Predicción de Sacrament
Responsable de Laboratorio de Modelaje y Simulación Remotos Campo Experimental Pabellón

Guillermo MEDINA GARCÍA
Investigador en Potencial Productivo Campo Experimental Zacatecas

José Ariel RUIZ CORRAL
Investigador en Potencial Productivo Campo Experimental Centro-Arly de Jalisco

Esteban Salvador OSUNA CEJA
Investigador en el área de Conservación de Suelo y Agua Campo Experimental Pabellón

CENTRO DE INVESTIGACIÓN REGIONAL NORTE CENTRO CAMPO EXPERIMENTAL PABELLÓN
Pabellón de Arteaga, Ags.

Publicación Especial Num. 36
Noviembre de 2009
Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias.
Progreso No. 5
Barrio de Santa Catarina
Delegación Coyacán
México, D.F., 04010
Tel. (55) 3871-8700

Primera edición 2009

Centro de Investigación Regional Norte Centro.
Campos Experimental Pabellón.
Kilómetro 32.5 Carretera Aguascalientes-Zacatecas.
Apartado Postal No. 20, C.P. 20660
Pabellón de Arteaga, Aguascalientes.
México.

No está permitida la reproducción total o parcial de esta publicación, ni la transmisión de ninguna forma o por cualquier medio, ya sea electrónico, mecánico, fotocopia, por registro u otros métodos, sin el permiso previo y por escrito de la institución.
CONTENIDO

<table>
<thead>
<tr>
<th>Capítulo</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. INTRODUCCIÓN</td>
<td>1</td>
</tr>
<tr>
<td>2. ÁREA DE ESTUDIO</td>
<td>3</td>
</tr>
<tr>
<td>3. REQUERIMIENTOS DE CLIMA Y SUELO DE LA CAÑA DE AZÚCAR</td>
<td>7</td>
</tr>
<tr>
<td>3.1. Clima</td>
<td>7</td>
</tr>
<tr>
<td>3.2. Suelo</td>
<td>11</td>
</tr>
<tr>
<td>4. CARACTERIZACIÓN CLIMÁTICA Y EDÁFICA</td>
<td>12</td>
</tr>
<tr>
<td>4.1. Información utilizada</td>
<td>12</td>
</tr>
<tr>
<td>4.2. Criterios de caracterización</td>
<td>13</td>
</tr>
<tr>
<td>4.2.1. Clima</td>
<td>13</td>
</tr>
<tr>
<td>4.2.2. Suelo</td>
<td>15</td>
</tr>
<tr>
<td>4.2.3. Identificación de variables limitantes</td>
<td>20</td>
</tr>
<tr>
<td>5. RESULTADOS</td>
<td>20</td>
</tr>
<tr>
<td>5.1. Caracterización Climática</td>
<td>20</td>
</tr>
<tr>
<td>5.2. Caracterización Edáfica</td>
<td>33</td>
</tr>
<tr>
<td>6. CONCLUSIONES</td>
<td>48</td>
</tr>
<tr>
<td>7. LITERATURA CITADA</td>
<td>49</td>
</tr>
<tr>
<td>8. AGRADECIMIENTO</td>
<td>53</td>
</tr>
</tbody>
</table>
1. INTRODUCCIÓN

Los estudios integrales de patrones y procesos ecológicos a escala regional, requieren considerar el mosaico ambiental en el que operan (Hansson et al., 1995), (Bremer et al., 1986; Forman y Gordon, 1986, citados por Cotler et al., 2001), el cual está determinado por la interacción de los procesos morfodinámicos y pedogenéticos y por el régimen de disturbio (Forman y Gordon, 1986); sin embargo, estos factores no son independientes entre sí, sino que su interacción permite delimitar áreas agroecológicas con características relativa mente homogéneas (Tricart, 1978).

Cada región agroecológica presenta condiciones y recursos específicos resultantes de la topografía, la litología aflorante, las condiciones climáticas (incluyendo efectos de humedad y temperatura), la actividad de los macro y microorganismos y la edad del suelo. Las variaciones de estos factores a nivel regional crean una diversidad de hábitats desde el punto de vista ecológico y una diferenciación en cuanto al potencial productivo, ya sea forestal o agropecuario, misma que se conoce también como “calidad del sitio” (Schlichting, 1986).

El clima y suelo son los dos componentes ambientales más determinantes en la adaptación, distribución y productividad de las especies vegetales. El clima está constituido por elementos que el hombre no puede controlar ni modificar a gran escala; a diferencia del suelo, que puede modificarlo y manejar ciertas características físicas, químicas y biológicas para mejorar su calidad y productividad y por ende la producción de las plantas cultivadas.

Entender las condiciones climáticas y edáficas que inciden sobre el crecimiento y desarrollo de un cultivo, mediante la caracterización espacial y a través del tiempo, es vital para valorar el potencial de los elementos del clima y suelo disponible, sus restricciones y sus posibles efectos en los sistemas de producción del área de interés.
De los elementos del clima, la precipitación es la variable que más influye sobre el crecimiento y producción de las especies cultivadas que se establecen bajo condiciones de temporal ya que dependen exclusivamente del agua de lluvia para su desarrollo. Por su parte, la temperatura regula la tasa de crecimiento y desarrollo de los seres vivos, en especial en los poiquiloiérmicos o de sangre fría, al igual que la radiación solar influye en la realización de la fotosíntesis de las plantas, mientras que el fotoperíodo estimula la floración de ciertas especies de plantas, y la humedad ambiental interviene en la transpiración de las plantas y en el desarrollo de los microorganismos, entre otras.

El conocimiento espacial de los factores climáticos y edáficos mediante la aplicación de los Sistemas de Información Geográfica (SIG), para el mapeo y caracterización del mosaico ambiental, permite tener una visión espacial y temporal más amplia, no sólo para comprender los procesos de estructuración del ambiente, sino para complementar los estudios ecológicos que permitan reforzar la toma de decisiones que conlleven al mejoramiento de los sistemas de producción y en la implementación de medidas preventivas que eviten los riesgos (exceso o déficit) de ciertos elementos.

El estado de Sinaloa, se caracteriza por poseer relieves de diferentes magnitudes y que influyen en la distribución del clima y microclima que existen en cada región agroecológica, particularmente en el aspecto de la cantidad y distribución de la precipitación, variación de la temperatura, de la evaporación y la humedad relativa. (Wikipedia 2009)

El objetivo de este estudio fue caracterizar las condiciones climáticas y edáficas del área de abastecimiento del Ingenio “El Dorado”, con el propósito de identificar limitantes o ventajas ambientales para el desarrollo y producción de caña de azúcar.
2. ÁREA DE ESTUDIO

Ubicación

El Dorado es una ciudad que pertenece al municipio de Culiacán en el estado de Sinaloa y se encuentra localizada a 72 kilómetros al suroeste de la cabecera municipal. La Sindicatura de El Dorado está ubicada en la parte central del municipio, en el valle de San Lorenzo y está conformada por 22 comisarías, con una extensión territorial de 566.6 km²; colinda al norte con la Sindicatura de Costa Rica; al este con la de Culúa; al sur con el Golfo de California y la Sindicatura de Emiliano Zapata, mientras que al oeste lo hace con el Golfo de California (Ayuntamiento de Culiacán, 2009).

El Dorado basa su historia en las familias que introdujeron el cultivo de caña de azúcar en esta región. Don Joaquín Recó fue uno de los pioneros que instaló el ingenio azucarero en esta población por la fertilidad que estas tierras poseían para el desarrollo de la caña de azúcar, actividad que se sigue conservando como una de las más importantes para el desarrollo de la comunidad.

Orografía

El relieve de la zona de abasto del Ingenio “El Dorado” se ubica en la porción costera del municipio de Culiacán, el cual está formado por planicies con altitudes no mayores a los 40 metros sobre el nivel del mar y por costas de emisión; sus suelos son resultado principalmente de la aparición de parte de la plataforma continental, que ha aflorado a la superficie por el descenso del nivel del mar (SEGOB, 2009).

Hidrografía

El municipio de Culiacán es irrigado por cuatro corrientes hidrológicas formadas por los ríos Humaya, Tamazula, Culiacán y San Lorenzo.
El río Humaya tiene su origen en el estado de Durango, entrando a Sinaloa por el municipio de Badiraguato y sus aguas son controladas por la presa Licenciado Adolfo López Mateos.

El río Tamazula nace en la Sierra Madre Occidental en las cercanías del valle de Topia y su corriente es controlada por la presa Sanalona. Ambos ríos, el Humaya y Tamazula se unen frente a la ciudad de Culiacán para formar el río Culiacán, que desemboca en el Golfo de California.

El río San Lorenzo nace en la Sierra Madre Occidental dentro del estado de Durango, se interna a Sinaloa a través del municipio de Cosalá, riega las tierras de la Sindicatura El Dorado y vierte sus aguas al Océano Pacífico en el Golfo de California (SEGOB, 2009).

Clima

En la zona de abasto del Ingenio "El Dorado", se tiene una temperatura media anual de 24 ºC, con una mínima promedio de 2 ºC y máxima promedio de 34 ºC. La precipitación pluvial promedio (datos de 1961 a 2002 proporcionados por Gabriel Díaz Padilla) es de 668 milímetros pero fluctúa entre 600 y 800 acumulados durante el año y el patrón de lluvias es altamente variable como consecuencia de las lluvias de tipo ciclónico. El clima es húmedo y caliente en verano, mientras que en invierno la temperatura es agradable, con escasas precipitaciones, los vientos dominantes se desplazan principalmente en dirección noroeste, con una velocidad aproximada de dos metros por segundo (SEGOB, 2009; Monografías, 2009).

El Ingenio "El Dorado" se localiza en la Latitud Norte 24º 19’ 13.82” y Longitud Oeste 107º 22’ 05.71” en el Municipio de Culiacán, Sinaloa. Geográficamente el área de abasto de caña para el ingenio se encuentra en el cuadrante 24º 13’ 45.72” a 24º 28' 24.11” Latitud Norte y 107º 10’ 06.80” a 107º 27’ 55.55” Longitud Oeste, abarcando parte de los municipios de Culiacán y Cruz de Elota (Figura 1).
Figura 1. Ubicación geográfica del Ingenio “El Dorado” y de su área de abastecimiento.

Tradicionalmente, el Ingenio “El Dorado” comienza su zafra en diciembre con una duración promedio de 172 días de acuerdo con los datos de los últimos 11 años (Unión Nacional de Cañeros, 2009).

Suelo

Las características geológicas en la Sindicatura de El Dorado pertenecen a las típicas de la faja costera formada por capas recientes del Pleistoceno y formaciones geológicas del principio de la era Cuaternaria (SEGOB, 2009). La mayor superficie de esta zona es de uso agrícola, donde predominan los suelos franco que presentan texturas medias (franco arenosas, franco limosas, arenosas francas y franco arcillosas).
con un adecuado contenido de arena, limo y arcilla. Además presentan propiedades físicas favorables, respecto a la capacidad de retención de agua, permeabilidad y facilidad de laboreo.

La región central de Culiacán, está compuesta principalmente por rocas metamórficas de la era Mesozoica. La litología y el clima predominante determinan en esta región la existencia de cinco tipos de suelo; entre los que se pueden mencionar como los más importantes: el Feozem híplico, Vertisol crómico y el Fluvisol eútrico (Figura 2), los cuales se caracterizan por presentar una capa superficial oscura, suave, rica en materia orgánica y nutrientes, de fertilidad moderada y buena. (SEGOB, 2009).

PROYECTO: PREDICCIÓN DE COSECHAS EN ZONAS CAÑERAS DE MÉXICO
TIPO DE SUELLO EN LA ZONA DE ABASTECIMIENTO DE CAÑA DE AZÚCAR
DEL INGENIO EL DORADO

Figura 2. Tipos de suelo presentes en el área de abastecimiento del Ingenio “El Dorado”.
Capacidad de procesamiento del Ingenio

El Ingenio "El Dorado" pertenece al Grupo Azucarero México que es una empresa industrial alimentaria dedicada a la producción y comercialización de azúcar de caña y sus derivados. Tiene una capacidad instalada de 5,000 toneladas de caña por día, con una producción de azúcar estándar de 350 toneladas diarias, durante un periodo de zafra que en promedio dura 174 días. (GAMSA, 2009).

El área de abastecimiento es de más de 5,200 ha, que se localizan principalmente en los municipios de Culiacán y Cruz de Elota.

3. REQUERIMIENTOS DE CLIMA Y SUELO DE LA CAÑA DE AZÚCAR

3.1. Clima

Según Brandes (1956), las especies de caña de azúcar de tallo grueso tuvieron su origen en Nueva Guinea y las de tallo delgado en la India (Chaturvedi, citado por Ruiz et al., 2003).

El cultivo de la caña de azúcar se distribuye desde los 37° Latitud Norte hasta los 32° Latitud Sur (Biswas, 1986). Botánicamente la especie Saccharum officinarum L., es una planta que pertenece a la familia Poaceae que se adapta a condiciones tropicales y subtropicales con régimen húmedo, subhúmedo y semiárido; aunque en estas dos últimas condiciones de humedad requiere de riego suplementario (Biswas, 1986). Es una planta de tipo fotosintético C_4 con ciclo de producción que va de 10 a 24 meses (Biswas, 1986). Sus requerimientos climáticos son los siguientes:

- **Fotoperiodo.** Es una especie de día corto, aunque existen cultivares de día neutro (Benacchio, 1982). La mayoría de los cultivares no florecen en fotoperíodos mayores a 13 horas y menores a 12. Las condiciones que inducen la iniciación
floral son 12.4 horas de fotoperíodo y con rango de 20 a 25 °C de temperatura nocturna (Baradas, 1994).

- **Altitud.** Según Benacchio (1982), el cultivo de la caña de azúcar se adapta bien en altitudes entre 0 a 1,600 metros.

- **Precipitación (Lluvia).** La caña de azúcar es un cultivo que se desarrolla bien en regiones que registran una precipitación de 1,000 a 2,200 mm bien distribuidos durante el año; sin embargo, es necesario aplicar riegos complementarios cuando el déficit hídrico anual sea superior a 150 mm. Para realizar la zafra se requiere una época seca (Benacchio, 1982). Las necesidades de agua de la caña de azúcar son de 1,500 a 2,500 mm, distribuidos de manera uniforme durante la temporada de desarrollo. Con una evapotranspiración durante la estación vegetativa, de 5 a 6 mm/día, el nivel de agotamiento puede ser del 65 % del agua total disponible, sin tener efectos graves sobre los rendimientos (Doorenbos y Kassam, 1979).

- **Humedad ambiental.** El cultivo de la caña de azúcar, de acuerdo con lo reportado por Kakade, (1985a), prospera mejor en ambientes con humedad relativa alrededor de 50 %.

- **Temperatura.** Temperaturas umbrales para germinación entre 10 y 40 °C, con un rango óptimo de 20 a 32 °C (Humbert, 1968).

El amacollamiento se reduce a menos de 21 °C (Biswas, 1986) y se incrementa a temperaturas alrededor de 26 °C (Singh y Singh, 1966). Temperaturas ligeramente por arriba de 20 °C son las más favorables para el crecimiento (Biswas, 1986).

El crecimiento activo se reduce cuando la temperatura cae por debajo de los 10 °C y si ésta es menor de 5 °C, las hojas presentan una coloración rosada que es un síntoma similar al causado por la inundación (Biswas, 1986).
La fotorespiración se incrementa cuando la temperatura se eleva por encima de los 35° C (Chung y Kong, 1971). Las temperaturas cercanas a los 38° C reducen la fotosíntesis y por lo tanto el crecimiento en general (Kortschack, 1972).

La tasa y patrón de crecimiento del follaje está gobernada por la prevalencia de temperaturas del suelo entre 21 y 38 °C con una humedad relativa del 50 % (Kakade, 1985a). Cuando la temperatura baja de 21 °C, el crecimiento se limita y cesa a 12 °C (Biswas, 1986). Para crecimiento, el óptimo de temperatura del suelo se ubica en 26 a 27 °C (Humbert, 1968). Temperaturas altas del suelo reducen el crecimiento del sistema radicular (Blackburn, 1984).

Temperaturas bajas y alta humedad son los factores más favorables para una floración temprana, contrario a lo que se creía de que un ambiente seco y soleado induciera la floración (Stevenson, 1963). Las temperaturas nocturnas por debajo de 18 °C pueden evitar la floración (Coleman, 1968), mientras que las temperaturas de 20 a 25 °C la promueven (Baradas, 1994).

Diferencias grandes entre temperaturas nocturnas y diurnas son muy favorables para la maduración (Biswas, 1986). Una reducción gradual de temperaturas y humedad durante 4 a 6 semanas antes de la cosecha ayudan significativamente a la maduración (Kakada, 1985b).

El crecimiento de la caña cesa entre 10 a 12 °C y es considerada como la temperatura mínima para el comienzo de la maduración, que se acelera también retirando el agua de riego (Gowing y Baniaboassi, 1978).

- Luz. La caña de azúcar es una planta que necesita la luz del sol directa y tiene una alta habilidad para utilizar eficientemente la energía solar; además, por ser una planta C4, es capaz de realizar altas tasas fotosintéticas y este proceso tiene un alto valor de saturación de luz llegando a alcanzar un valor de 64.6 Klux (Baradas, 1994): crece bien en áreas que reciben energía solar de 18 a 36
MJ/m² y en este cultivo, la tasa fotosintética se incrementa en la medida que aumenta intensidad natural de la luz.

El ahijamiento de la caña de azúcar está influenciado por la intensidad y la duración de la radiación solar, de tal forma que una intensidad alta y larga duración de la irradiación estimulan el ahijamiento, mientras que las condiciones de clima nublado y días cortos lo afectan adversamente; por eso entre mayor sea la incidencia de la radiación, mayor es la producción de sacarosa que se puede esperar (Blackburn, 1984).

- **Radiación.** La radiación solar es la principal fuente de energía de las plantas, las cuales utilizan las longitudes de onda entre 400 y 700 nm, que corresponden al ámbito de radiación fotosintética activa; de esta manera, se lleva a cabo el proceso de la fotosíntesis y otras reacciones metabólicas. Cuanto mayor radiación exista, mayor será la eficiencia fotosintética, aspecto muy relacionado con la producción y acumulación de carbohidratos.

La radiación total promedio interceptada por un cultivo de caña en un ciclo de crecimiento de 12 meses ha sido estimada en 6350 MJ/m². Cerca del 60% de esta radiación es interceptada por el follaje, durante la fase formativa y en la fase de rápido crecimiento. En el follaje del cultivo de la caña las primeras 6 hojas superiores interceptan el 70% de la radiación y la tasa fotosintética de las hojas inferiores disminuye debido al sombreado mutuo. Por lo tanto, para una utilizar efectivamente la energía radiante, en caña de azúcar se considera como óptimo un valor de 3.0 a 3.5 de índice de Área Follar.

- **Viento.** Se ha estimado que el 30% del agua aplicada a las parcelas de cultivo de caña de azúcar es perdida por acción de la energía solar, un 14% se pierde por efecto del viento y un 6% se pierde por acción de la temperatura y la humedad; así mismo, velocidades de viento superiores a 60 km/h son perjudiciales para la caña con buen desarrollo, ya que puede provocar acampe y
rompimiento de las mismas; además de que el viento favorece la pérdida de humedad de las plantas, agravando los efectos del estrés hídrico.

3.2. Suelo

Muchos autores coinciden en señalar que la caña de azúcar es una planta que tolera muy bien suelos con diferente textura, ya que es posible encontrar plantaciones, tanto en suelos arcillosos muy pesados, como en suelos extremadamente arenosos, (Fauconnier y Basserea, citados por Rojas y Eldin, 1983).

La productividad de un terreno depende de su calidad física, química y biológica; es decir, depende de las propiedades del suelo, las cuales, muchas de ellas pueden ser modificadas dentro de los límites del agro-ecosistema (Doran y Zeiss, 2000), por lo tanto, es indispensable procurar mantener el equilibrio productivo de las parcelas para obtener un rendimiento adecuado.

Los mejores terrenos para la producción de caña de azúcar son los que presentan los requerimientos edáficos señalados a continuación:

- **Textura de suelo.** El cultivo de caña de azúcar responde óptimamente en suelos de textura limosa o arcillo-arenosa; sin embargo, ya se ha mencionado que tolera muy bien condiciones diversas de textura del suelo.

- **Profundidad del suelo.** La profundidad óptima para la producción de caña es de 50 cm. y el límite o marginal de 10 cm. (FAO, citado por Rojas y Eldin, 1983). Normalmente, bajo un suministro de agua adecuado, el 100% del agua que utiliza la caña de azúcar se extrae de los primeros 1.2 a 2.0 m del suelo (Doorenbos y Kassam, 1979).

- **Salinidad.** La caña de azúcar es moderadamente sensible a la salinidad y la disminución en el rendimiento del cultivo por este factor es la siguiente: 0% para
una conductividad eléctrica de 1.7 mmhos/cm.; 10% para 3.3 mmhos/cm.; 25% para 6.0 mmhos/cm.; 50% para 10.4 mmhos/cm. y 100% para 18.6 mmhos/cm.
(Doorenbos y Kassam, 1979; Benacchio, 1982).

- **pH.** El cultivo de la caña de azúcar tolera un rango de pH entre 4.5 a 8.5 (FAO; citado por Rojas y Eldin, 1983) y el óptimo va de 6.0 a 8.0 (Ignatieff; citado por Moreno, 1992), pero para la producción, le favorece más el establecimiento en suelos con valores cercanos a 6.5 (Doorenbos y Kassam, 1979).

- **Drenaje.** Para la producción de caña de azúcar, se requiere establecer el cultivo por lo menos en suelos moderadamente drenados para evitar problemas graves de producción, pero lo óptimo es buscar una condición de suelos bien drenados que permitan expresar el máximo potencial de la variedad establecida en el terreno (FAO, citado por Rojas y Eldin, 1983).

4. CARACTERIZACIÓN CLIMÁTICA Y EDÁFICA

4.1. Información utilizada

Para la caracterización climática se utilizó la información digital disponible en la base de datos del sistema nacional de información ambiental del INIFAP con datos proporcionados por Gabriel Díaz Padilla en formato IDRISI (Eastman, 1999) y ArcView (ESRI, 1999). La información climática utilizada para generar esta caracterización regional corresponde al periodo de 1961 a 2002 e incluyó para el estado de Sinaloa 52 estaciones meteorológicas de la red de estaciones de la Comisión Nacional del Agua; de estas estaciones, sólo cinco se ubican dentro del área productora de caña del Ingenio "El Dorado".
Cuadro 1. Estaciones climatológicas ubicadas en el área productora del Ingenio "El Dorado" en el estado de Sinaloa.

<table>
<thead>
<tr>
<th>Estación</th>
<th>Municipio</th>
<th>Latitud N</th>
<th>Longitud W</th>
<th>Altitud msnm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bethania</td>
<td>Tuxtepec</td>
<td>17° 55'</td>
<td>96° 04'</td>
<td>33</td>
</tr>
<tr>
<td>Canton</td>
<td>San Lucas Ojitlán</td>
<td>18° 01'</td>
<td>96° 17'</td>
<td>37</td>
</tr>
<tr>
<td>Papaloapan</td>
<td>Tuxtepec</td>
<td>18° 08'</td>
<td>96° 05'</td>
<td>16</td>
</tr>
<tr>
<td>Temascal</td>
<td>San Miguel Soyaltepec</td>
<td>18° 15'</td>
<td>96° 24'</td>
<td>62</td>
</tr>
<tr>
<td>Valle Nacional</td>
<td>Valle Nacional</td>
<td>17° 47'</td>
<td>96° 19'</td>
<td>101</td>
</tr>
</tbody>
</table>

Las variables climáticas consideradas en el estudio fueron temperatura máxima y mínima, precipitación y evaporación, de las cuales se generaron las temperaturas media, diurna y nocturna, y evapotranspiración potencial a nivel mensual, que se procesaron mediante el sistema de información geográfica ArcView.

En la caracterización edáfica se utilizó la información de 188 puntos de muestreo dentro del área de abasto del Ingenio "El Dorado" que fue analizada por el Colegio de Postgraduados, en Montecillo, Méx. Las variables consideradas en este apartado fueron textura, pH, conductividad eléctrica, densidad aparente, capacidad de almacenamiento de humedad del suelo y contenido de materia orgánica. Todas estas variables fueron interpoladas con el programa ArcView.

4.2. CRITERIOS DE CARACTERIZACIÓN

4.2.1. Clima

La caracterización climática del área de abasto de caña del Ingenio "El Dorado", se realizó con base en normales mensuales en el ambiente del Sistema de Información Geográfica Arc View, para obtener los parámetros climáticos siguientes:

1) Temperatura máxima media anual. Es el promedio de los 12 valores mensuales de temperatura máxima media.
2) Temperatura mínima media anual. Se calcula a partir de los datos mensuales registrados de temperatura mínima y es el promedio anual registrado en la región.

3) Temperatura media anual. Es el promedio de los todos valores mensuales de temperatura media registrados en la región y se obtiene por diferencia entre la temperatura máxima y mínima.

4) Temperatura diurna media anual. Se obtiene al promediar los 12 valores mensuales de temperatura diurna media. La temperatura diurna se calcula aplicando la siguiente ecuación:

\[
T_d = T_m + \frac{[T_{xm} - T_{im}](1 - T_o)}{4(12 - T_o) \sin \left(\frac{\pi}{11 + T_o} \right)}
\]

Donde:
- \(T_d\) = Temperatura diurna media mensual (°C)
- \(T_{xm}\) = Temperatura máxima media mensual (°C)
- \(T_{im}\) = Temperatura mínima media mensual (°C)
- \(T_m\) = Temperatura media mensual (°C)
- \(T_o\) = 12 - 0.5 N
- \(N\) = Fotoperíodo (se utilizó el valor correspondiente al día 15 de cada mes).
- \(\sin\) = Seno expresado en radianes; \(\pi = 3.1416\)

5) Precipitación acumulada promedio anual. Corresponde a la acumulación de valores mensuales normales de precipitación desde enero hasta diciembre.

6) Evaporación acumulada promedio anual. Se obtiene al acumular los valores mensuales normales de evaporación desde enero hasta diciembre.
7) Evapotranspiración potencial (ETP) acumulada promedio anual. Esta fue calculada de valores mensuales normales de ETP y acumulada de enero a diciembre. Se utilizó la expresión siguiente:

\[ETP = Ev \times 0.8 \]

Donde:
- \(ETP \) = Evapotranspiración potencial mensual
- \(Ev \) = Evaporación acumulada promedio mensual
- \(0.8 \) = Factor de ajuste de la evaporación del tanque evaporímetro tipo A, que depende de las condiciones medias del lugar en cuánto a cobertura vegetal, velocidad del viento y nivel promedio de humedad relativa.

4.2.2. Suelo

La caracterización edáfica del área de abasto de caña del Ingenio “El Dorado” se realizó con la información obtenida directamente en campo mediante un muestreo sistemático en toda la región e interpolados y analizados para los siguientes parámetros edáficos:

1.) Textura del suelo. Es la composición del suelo por grupos de partículas de diversos tamaños clasificados mediante una categorización sistemática de suelos basado en características distintivas y en criterios de uso (FAO-UNESCO, 2008); por lo tanto, la textura del suelo es la proporción relativa de arena, limo y arcilla que tiene un sitio determinado.

2.) Contenido de materia orgánica. Es un componente fundamental en los agroecosistemas porque suministra el sustrato orgánico para la liberación de nutrientes, fomenta el mejoramiento de la calidad del suelo y la capacidad de retención de agua.
3.) Densidad aparente. Es la propiedad que se suele utilizar como medida de la estructura del suelo y se calcula como el peso seco del suelo entre el volumen que ocupa. Depende de factores como la densidad de las partículas de suelo mineral, la cantidad de materia orgánica, la compactación del suelo, las actividades de animales que excaván en la tierra, tales como las lombrices, y la abundancia de raíces de plantas.

4.) Capacidad de almacenamiento de humedad del suelo. Es el agua contenida en el suelo disponible para las plantas. La determinación de este parámetro permite conocer la condición general y el comportamiento de la capacidad de almacenamiento de humedad que tiene un suelo.

5.) Conductividad eléctrica. La conductividad eléctrica es la capacidad natural que tiene un cuerpo de permitir el paso de la corriente eléctrica a través de sí (Duran et al, 2009). El suelo, al igual que cualquier material conductor eléctrico, se opone al paso de la corriente eléctrica y ofrece una resistencia que puede ser calculada por la siguiente ecuación:

\[R = \rho \frac{L}{A} \]

Donde:
- \(R \) = Resistencia (\(\Omega \)).
- \(\rho \) = Resistencia específica (\(\Omega \cdot m \)).
- \(L \) = Longitud (m).
- \(A \) = Superficie (m2).

6.) Potencial hidrógeno del suelo. El pH es una medida de la concentración de hidrógeno expresado en términos logarítmicos y se modifica en la medida en que la concentración de los iones de hidrógeno incrementan o reducen, variando entre un rango de 0 a 14 (Ibáñez, 2009).
Los valores por debajo 7.0 son ácidos, valores superiores a 7.0 son alcalinos y/o básicos, mientras que los cercanos a 7.0 son denominados neutrales. Por cada unidad de cambio en pH hay un cambio 10 veces en magnitud en la acidez o alcalinidad, por ejemplo: un pH 6.0 es diez veces más ácido que uno de pH 7.0, mientras que un pH 5.0 es 100 veces más ácido que el de 7.0).

El pH del suelo aporta información de suma importancia y permite conocer la facilidad con que las plantas pueden absorber los minerales disueltos en el agua y el grado de solubilidad de los minerales. Por ejemplo, el aluminio y el manganeso son más solubles en el agua en el suelo a un pH ácido, y cuando tal hecho ocurre, pueden ser absorbidos por las raíces, siendo tóxicos a ciertas concentraciones. Por el contrario, determinadas sales minerales que son esenciales para el desarrollo de las plantas, tal como el fosfato de calcio, son menos solubles a un pH alcalino, lo que tiene como resultado que bajo tales condiciones sean menos disponibles para nutrir las plantas.

En la caracterización edáfica del área de abasto de caña del Ingenio "El Dorado", se consideraron las variables y los niveles que se señalan a continuación, utilizando para ello el Sistema de Información Geográfica ArcView.

<table>
<thead>
<tr>
<th>Nivel</th>
<th>Contenido de Materia Orgánica (%)</th>
<th>Condición*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>< 1</td>
<td>Muy Pobre</td>
</tr>
<tr>
<td>2</td>
<td>1.0-1.99</td>
<td>Pobre</td>
</tr>
<tr>
<td>3</td>
<td>2.0-2.99</td>
<td>Mediano</td>
</tr>
<tr>
<td>4</td>
<td>3.0-3.99</td>
<td>Rico</td>
</tr>
<tr>
<td>5</td>
<td>> 3.99</td>
<td>Muy Rico</td>
</tr>
</tbody>
</table>

* Considerando el nivel de materia orgánica humificada.
Clasificación del pH del suelo (Moreno, 1993).

<table>
<thead>
<tr>
<th>Nivel</th>
<th>Rango</th>
<th>Condiciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>< 4.2</td>
<td>Extremadamente ácido</td>
</tr>
<tr>
<td>2</td>
<td>4.20-5.59</td>
<td>Fuertemente ácido</td>
</tr>
<tr>
<td>3</td>
<td>5.60-6.59</td>
<td>Moderadamente ácido</td>
</tr>
<tr>
<td>4</td>
<td>6.60-7.39</td>
<td>Neutro</td>
</tr>
<tr>
<td>5</td>
<td>7.40-8.39</td>
<td>Moderadamente alcalino</td>
</tr>
<tr>
<td>6</td>
<td>> 8.39</td>
<td>Fuertemente alcalino</td>
</tr>
</tbody>
</table>

Estratigrafía para clasificar un suelo con base en conductividad eléctrica (USDA, 1954).

<table>
<thead>
<tr>
<th>Nivel</th>
<th>Conductividad eléctrica (25 °C)(mmhos/cm.)</th>
<th>Clasificación por salinidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0-2</td>
<td>No salino</td>
</tr>
<tr>
<td>2</td>
<td>2-4</td>
<td>Ligeramente salino</td>
</tr>
<tr>
<td>3</td>
<td>4-8</td>
<td>Moderadamente salino</td>
</tr>
<tr>
<td>4</td>
<td>8-12</td>
<td>Fuertemente salino</td>
</tr>
<tr>
<td>5</td>
<td>>12</td>
<td>Extremadamente o Muy Fuertemente salino</td>
</tr>
</tbody>
</table>

Clasificación del grado de compactación del suelo considerando su densidad aparente (Curiel, 1989)

<table>
<thead>
<tr>
<th>Nivel</th>
<th>Densidad aparente (g/cm³)</th>
<th>Condición</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>< 1.2</td>
<td>No - compactación</td>
</tr>
<tr>
<td>2</td>
<td>1.2-1.4</td>
<td>Compactación ligera a media</td>
</tr>
<tr>
<td>3</td>
<td>1.4-1.6</td>
<td>Compactación media a alta</td>
</tr>
<tr>
<td>4</td>
<td>>1.6</td>
<td>Compactación alta</td>
</tr>
</tbody>
</table>
Clasificación de la condición de humedad en los primeros 80 cm de suelo, para cuatro intervalos de CAHS.

<table>
<thead>
<tr>
<th>Nivel</th>
<th>CAHS (mm)</th>
<th>Condición</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>< 60</td>
<td>Baja</td>
</tr>
<tr>
<td>2</td>
<td>60-75</td>
<td>Media</td>
</tr>
<tr>
<td>3</td>
<td>75-100</td>
<td>Alta</td>
</tr>
<tr>
<td>4</td>
<td>> 100</td>
<td>Muy alta</td>
</tr>
</tbody>
</table>

CAHS = Capacidad de almacenamiento de humedad del suelo.

Clasificación del contenido de arena.

<table>
<thead>
<tr>
<th>Nivel</th>
<th>% arena</th>
<th>Condición</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>< 50</td>
<td>Baja</td>
</tr>
<tr>
<td>2</td>
<td>50-70</td>
<td>Media</td>
</tr>
<tr>
<td>3</td>
<td>> 70</td>
<td>Alta</td>
</tr>
</tbody>
</table>

Clasificación del contenido de arcilla.

<table>
<thead>
<tr>
<th>Nivel</th>
<th>% arcilla</th>
<th>Condición</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>< 20</td>
<td>Baja</td>
</tr>
<tr>
<td>2</td>
<td>20-55</td>
<td>Media</td>
</tr>
<tr>
<td>3</td>
<td>> 55</td>
<td>Alta</td>
</tr>
</tbody>
</table>

Clasificación del contenido de lino.

<table>
<thead>
<tr>
<th>Nivel</th>
<th>% lino</th>
<th>Condición</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>< 40</td>
<td>Baja</td>
</tr>
<tr>
<td>2</td>
<td>40-80</td>
<td>Media</td>
</tr>
<tr>
<td>3</td>
<td>> 80</td>
<td>Alta</td>
</tr>
</tbody>
</table>
4.2.3. Identificación de variables limitantes

La identificación de variables limitantes para la producción de caña se realizó tomando en cuenta los niveles de cada una de las características de clima y suelo consideradas en el presente estudio. Los niveles de estas características se compararon con los requerimientos edáfico-climáticos de la caña de azúcar, los cuales se describieron en el capítulo anterior.

5. RESULTADOS

5.1. Caracterización climática

Comportamiento general de la temperatura

En la Figura 3, que representa el área de abasto del Ingenio "El Dorado", se puede observar que la temperatura máxima media anual en el área cañera está entre los 31 a 34 °C, dominando el área el rango de 33 a 34 °C. Con estos valores, y de acuerdo a lo reportado por la FAO, citado por Ruiz (1999), el área de abasto está dentro de los valores apropiados de producción que requiere la caña de azúcar, por lo que se puede afirmar que esta variable no compromete el rendimiento normal del cultivo.

Para la temperatura mínima media anual, tal como se puede ver en la Figura 4, esta variable señala que los valores van desde 16 a 18 °C; sin embargo, la mayor parte del área de abasto del Ingenio "El Dorado" se encuentra en un rango de 17 a 18 °C, por lo tanto, nuevamente se observa que la temperatura no compromete el rendimiento de la caña de azúcar, debido a que la temperatura mínima media del mes más frío es de 18 °C.

Respecto a la variable de temperatura media anual, en la Figura 5 se puede observar que varía de 23 a 26 °C, concentrándose la mayor superficie con la temperatura media de 24 a 25 °C.
Lo anterior está acorde con lo señalado por García et al. (2004), de que la temperatura registrada en la zona de abasto del ingenio, defina una sola zona térmica de producción, considerada como cálida, la cual está dentro de los rangos óptimos de producción y tiene un efecto positivo en la velocidad de crecimiento, desarrollo y productividad de la caña de azúcar en la zona.

Régimen diurno de temperatura

El patrón diurno de la temperatura es fundamental, ya que durante el período diurno se lleva a cabo la fotosíntesis. La temperatura a la cual se efectúa la fotosíntesis es determinante en la cantidad de CO₂ que se asimila y en la magnitud de las tasas de fotorrespiración de la caña (FAO, 1978).

La temperatura diurna media anual para el área de abasto del Ingenio “El Dorado” (Figura 6), se distribuye geográficamente entre los 26 a 30 °C. De acuerdo con el criterio de la FAO (1978), los valores óptimos se ubican en el intervalo de 26 a 35 °C, los subóptimos en el intervalo de 22 a 28 °C y marginal menos de 22 °C. Bajo este parámetro, la temperatura diurna media que prevalece en la zona de abasto del ingenio para la realización de la fotosíntesis queda en el rango de óptima y sobre todo en los meses de las estaciones de primavera, verano y otoño. Sin embargo, para los meses de la estación de invierno se presenta la temperatura subóptima para el período de maduración del cultivo de caña.

Régimen de temperatura nocturna

Así como la temperatura diurna interviene en la actividad fisiológica de la planta, también la temperatura nocturna interviene para establecer el equilibrio entre los procesos fisiológicos realizados entre el día y la noche, que repercuten en el desarrollo de la planta, de los insectos plagas y en los microorganismos presentes en el cultivo.
En la Figura 7, se observa que en el área de abasto del Ingenio "El Dorado" la temperatura nocturna media presenta una variación de 18 a 21 ºC. Este intervalo de temperaturas nocturnas está considerado como favorable para el crecimiento y desarrollo de la caña durante todo el año, ya que a una temperatura menor de 12 ºC cesa ésta actividad fisiológica (Kakade, 1985b).

Disponibilidad de humedad para la producción de caña de azúcar

Precipitación. La distribución espacial y la cantidad de la precipitación tienen un papel preponderante en la disponibilidad de humedad durante el período de crecimiento y desarrollo del cultivo. En la Figura 8, se presenta la distribución espacial de la lluvia acumulada (media anual) en el área de abasto del ingenio; en ésta se observa que existe una variabilidad espacial en el área que va desde el litoral hacia la región serrana del estado con una acumulación anual que varía de 400 a 800 mm, lo cual es un valor de precipitación insuficiente para satisfacer las necesidades hídricas del cultivo de manera natural; sin embargo, debido a que el 100% de la superficie cultivada con caña de azúcar en el área de influencia del Ingenio "El Dorado" es irrigada, dicho déficit de precipitación se satisface mediante el agua de riego.

Evaporación. En la Figura 9 se muestra la distribución espacial de la evaporación acumulada media anual, que varió de 1,700 a 2,200 mm. En ésta se observa que en la mayoría de la superficie ocurren más de 1,600 mm de evaporación. Esta variable al transformarse en valores de evapotranspiración potencial cobra mayor significado agrícola.

La evaporación de la humedad de un suelo sin vegetación se produce en la capa superficial; al disminuir la humedad de ésta, se produce un desequilibrio y se presenta una atracción de la humedad subyacente, que asciende por capilaridad a la superficie, prosiguiendo la evaporación hasta que el agua capilar se agota. El agua higroscópica en equilibrio con la humedad atmosférica no se evapora.
Si el suelo está cubierto por vegetación, las pérdidas de agua a la atmósfera se incrementan por la transpiración, no obstante, la evaporación a partir de un suelo desnudo es superior a la del mismo suelo cubierto con vegetación pues en éste último, las radiaciones solares se amortiguan. Ahora bien, las pérdidas totales de agua, serán la suma de evaporación más la transpiración de la vegetación.

Evapotranspiración potencial (ETP) acumulada anual. En la Figura 10 se puede ver la demanda hídrica anual del área de abastecimiento del Ingenio “El Dorado”, la cual varía de 1,400 a 1,830 mm.

La necesidad de agua de la caña de azúcar, se refiere a la cantidad de agua requerida para los procesos productivos y compensar la pérdida por la evaporación y transpiración (evapotranspiración).

Resumen de las condiciones climáticas medias

En el Cuadro 1 se presentan los valores mensuales de las variables climáticas e índices agroclimáticos generados para la zona de abastecimiento del Ingenio “El Dorado”.

Cuadro 1. Estadística media mensual de clima para el área de caña de azúcar del Ingenio “El Dorado”, Culiacán, Sinaloa.

<table>
<thead>
<tr>
<th>Variable Climática</th>
<th>Ene</th>
<th>Feb</th>
<th>Mar</th>
<th>Abr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Ago</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dic</th>
<th>Media Anual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperatura Máxima (°C)</td>
<td>28.6</td>
<td>30.5</td>
<td>31.2</td>
<td>31.7</td>
<td>34.5</td>
<td>35.0</td>
<td>35.6</td>
<td>34.3</td>
<td>33.9</td>
<td>34.8</td>
<td>31.2</td>
<td>30.1</td>
<td>33.3</td>
</tr>
<tr>
<td>Temperatura Máxima (°C)</td>
<td>12.1</td>
<td>12.2</td>
<td>12.0</td>
<td>13.7</td>
<td>16.1</td>
<td>22.2</td>
<td>23.0</td>
<td>22.9</td>
<td>22.9</td>
<td>20.8</td>
<td>15.2</td>
<td>12.4</td>
<td>17.3</td>
</tr>
<tr>
<td>Temperatura Media (°C)</td>
<td>20.8</td>
<td>21.3</td>
<td>21.6</td>
<td>22.7</td>
<td>25.1</td>
<td>26.1</td>
<td>25.3</td>
<td>24.3</td>
<td>23.9</td>
<td>23.7</td>
<td>24.2</td>
<td>21.8</td>
<td>25.4</td>
</tr>
<tr>
<td>Temperatura Diurna Media (°C)</td>
<td>25.0</td>
<td>26.4</td>
<td>26.4</td>
<td>29.7</td>
<td>29.0</td>
<td>32.4</td>
<td>32.4</td>
<td>27.7</td>
<td>24.8</td>
<td>31.9</td>
<td>28.0</td>
<td>26.5</td>
<td>29.2</td>
</tr>
<tr>
<td>Temperatura Nocturna Media (°C)</td>
<td>16.7</td>
<td>16.2</td>
<td>16.2</td>
<td>19.7</td>
<td>20.6</td>
<td>25.8</td>
<td>25.0</td>
<td>25.4</td>
<td>25.0</td>
<td>25.1</td>
<td>23.8</td>
<td>16.4</td>
<td>16.8</td>
</tr>
<tr>
<td>Oscilación Térmica (°C)</td>
<td>18.3</td>
<td>20.3</td>
<td>22.0</td>
<td>21.4</td>
<td>20.4</td>
<td>15.9</td>
<td>14.9</td>
<td>14.0</td>
<td>13.0</td>
<td>12.7</td>
<td>19.0</td>
<td>13.2</td>
<td>26.6</td>
</tr>
<tr>
<td>Precipitación (mm)</td>
<td>14.8</td>
<td>6.1</td>
<td>1.9</td>
<td>2.9</td>
<td>1.4</td>
<td>4.2</td>
<td>128.5</td>
<td>136.4</td>
<td>116.1</td>
<td>85.3</td>
<td>20.1</td>
<td>24.4</td>
<td>53.4</td>
</tr>
<tr>
<td>Evaporación (mm)</td>
<td>197.0</td>
<td>119.6</td>
<td>177.8</td>
<td>212.7</td>
<td>249.3</td>
<td>193.4</td>
<td>228.9</td>
<td>184.3</td>
<td>144.2</td>
<td>142.8</td>
<td>117.2</td>
<td>95.9</td>
<td>156.6</td>
</tr>
<tr>
<td>Evapotranspiración Potencial (mm)</td>
<td>12.2</td>
<td>55.8</td>
<td>142.2</td>
<td>170.2</td>
<td>199.4</td>
<td>152.8</td>
<td>131.8</td>
<td>131.4</td>
<td>115.4</td>
<td>156.0</td>
<td>90.6</td>
<td>76.7</td>
<td>156.4</td>
</tr>
<tr>
<td>Diferencia Exceso de humedad (mm)</td>
<td>-57.3</td>
<td>-29.7</td>
<td>-148.3</td>
<td>-186.5</td>
<td>-198.0</td>
<td>-148.1</td>
<td>-33.2</td>
<td>27.0</td>
<td>0.9</td>
<td>-56.7</td>
<td>-73.7</td>
<td>-52.3</td>
<td>-1032.3</td>
</tr>
</tbody>
</table>
En el área de abasto del ingenio, la temperatura máxima media mensual durante todo el año supera los 28 °C; mientras que los valores de temperatura mínima mayores de 16 °C se presentan de mayo a octubre, de tal forma que la temperatura media adecuada para el crecimiento y desarrollo de la caña de azúcar se presenta en la mayor parte de los meses.

La diferencia entre la temperatura máxima y la temperatura mínima determina la oscilación térmica, la mayor variación osciló de 14.6 a 17.1 °C y se presenta en los meses de junio a agosto.

La temperatura diurna en esta región, fluctúa entre 26.0 a 32.4 °C, registrándose temperaturas mayores de 25 °C en todos los meses del año, mientras que la temperatura nocturna varió entre 15.7 a 26.3 °C, presentándose la temperatura favorable para el crecimiento y desarrollo de la caña mayor de 18 °C en los meses de abril a noviembre.

La cantidad y la distribución de la precipitación media mensual señala que el 85.6 % se presenta de julio a octubre, ocurriendo la mayor cantidad en los meses de julio y septiembre; mientras que la evaporación indica que la mayor pérdida de agua se presenta entre los meses de marzo a octubre. Estos valores transformados a evapotranspiración potencial (ETP) indican que son los meses de mayor demanda hídrica. Al realizar el balance hídrico entre la precipitación y la ETP se determinó que solamente en el mes de agosto existe un balance positivo, lo cual indica que la existencia de una estación de crecimiento para la caña de azúcar en cuanto a disponibilidad hídrica por la precipitación es muy limitado, ya que para poder sacar la producción cañera, se depende totalmente del agua de riego.

Para responder el cuánto y cuándo de la aplicación de riego, se requiere un estudio más detallado que defina la necesidad hídrica del cultivo, considerando clima, características físicas de suelo y fases de desarrollo del cultivo.
Figura 3. Temperatura máxima media anual en el área de abastecimiento del Ingenio "El Dorado".
Figura 4. Temperatura mínima media anual en el área de abastecimiento del Ingenio "El Dorado".
Figura 5. Temperatura media anual en el área de abastecimiento del Ingenio "El Dorado".
Figura 6. Temperatura diurna media anual en el área de abastecimiento del Ingenio "El Dorado".
Figura 7. Temperatura nocturna media anual en el área de abastecimiento del Ingenio “El Dorado”.
Figura 8. Precipitación media anual en el área de abastecimiento del Ingenio "El Dorado".
Figura 9. Evaporación acumulada promedio anual en el área de abastecimiento del Ingenio "El Dorado".
Figura 10. Evapotranspiración acumulada promedio anual en el área de abastecimiento del Ingenio "El Dorado".
5.2. Caracterización edáfica

El suelo es el soporte y sustento de todo agroecosistema, que es un conjunto de componentes que se vinculan entre sí en diferentes niveles de complejidad. La eficiencia con que se relacionan dichos componentes entre ellos, determinan la sostenibilidad, siendo el suelo, responsable de la formación de una estructura óptima, destinada a controlar, el comportamiento físico y los procesos elementales que en él ocurren. Las partes del agroecosistema interaccionan en una dinámica continua y cualquier cambio que se realice, afectará la totalidad.

Conocer las características del suelo es el punto de partida para integrarlo a la agricultura como parte de un sistema agroecológico, para obtener los máximos beneficios sin atentar contra su sostenibilidad o contribuir a su degradación.

Textura

En el suelo crecen las raíces de los cultivos y necesitan un medio en el que se desarrollen óptimamente, ya que de él toman el agua y los nutrientes minerales como nitrógeno, fósforo, potasio, etc., que necesitan para su crecimiento, desarrollo y producción.

La textura está determinada por la proporción relativa de arena, limo y arcilla en el suelo. Se considera que un suelo presenta buena textura cuando la proporción de los elementos que la constituyen, le brindan la capacidad de almacenar una óptima cantidad de agua; el movimiento del agua; el abastecimiento de nutrientes, agua y aire; lo cual es considerado de gran importancia para la vida de las plantas. Los porcentajes de cada elemento, se señalan a continuación:

Arena.- Representa la parte más gruesa del tamaño de las partículas del suelo y tiene por lo tanto solamente funciones mecánicas. La importancia de su estudio radica en la influencia que tiene en la porosidad del suelo, ya que un contenido
de arena alto hace que los suelos tengan poros más grandes y permiten una infiltración del agua más rápida, pues estos favorecen el movimiento del aire y agua dentro del suelo.

En la mayor parte de la superficie del área de abasto del ingenio, el contenido de arena en el suelo presenta valores menores al 50 % (Figura 11), lo cual son contenidos aceptables de arena que no impactan negativamente en la producción de caña de azúcar.

Limo.- Esta fracción del suelo participa en forma limitada en la actividad química con las partículas de diámetro inferior, mientras que su influencia en la relación agua – suelo es significante, y se incrementa con el aumento de los diámetros menores de este.

Al igual que el contenido de arena, el limo en la mayor parte de la superficie del área de abasto del Ingenio “El Dorado” (Figura 12), presenten valores bajos con contenidos menores al 40 %, siguiendo en orden decreciente un nivel medio en un área donde predominan los suelos Cambisoles.

Arcilla.- Comprende la parte coloidal mineral del suelo, y representa la fracción más activa, tanto desde el punto de vista físico como del químico, participando en el intercambio iónico y reaccionando a la presencia del agua, según su naturaleza. El alto contenido de arcilla hace que los suelos tengan una mayor superficie activa que los suelos arenosos; poseen mayor capacidad de retención de agua debido al alto número de microporos; poseen mayor capacidad de adsorción de nutrientes y usualmente son más fértiles.

En área de abasto del Ingenio “El Dorado”, la mayor parte de los suelos presentan un contenido de arcilla medio, como se muestra en la Figura 13, lo cual los caracteriza como suelos de textura media de tipo migajón arcilloso al combinarse con sus contenidos bajos de arena y limo.
En relación a la estructura del suelo, es decir, la forma en la que se agregan las partículas primarias del suelo y que afecta otras propiedades como la porosidad y la capacidad de infiltración, los suelos presentan una estructura estable o buena para la producción del cultivo de caña de azúcar.

Contenido de materia orgánica

Respecto de la presencia de materia orgánica (MO) en el suelo, esta es indispensable en la formación de los agregados, dado que es el aglutinante o "pegamento" que contribuye a estabilizar la estructura deseable del suelo. La MO tiene un impacto significativo sobre las propiedades físicas, químicas y biológicas del suelo. El conocimiento de la dinámica de la MO es esencial para entender el flujo del carbono (C) y nitrógeno (N) en el suelo, ya que la movilización de nutrientes y la captación de carbono depende de la abundancia de materia orgánica, lo que disminuye la concentración de Anhídrido Carbónico (CO₂) en la atmósfera, contribuyendo a minimizar el efecto invernadero.

Las producciones promedio de caña de azúcar reportadas por el Ingenio “El Dorado” desde 1998 a 2008 son de 89 ton/ha que se consideran bajos debido al potencial que puede alcanzar el cultivo de caña en la región; sin embargo, estas bajas producciones pueden ser causadas por las deficientes condiciones físicas de los suelos; por lo tanto, si se quiere incrementar la productividad de las áreas de producción, es necesario mejorar las condiciones físicas de los suelos. Una opción viable es incrementar el contenido de materia orgánica en el suelo.

El contenido de materia orgánica presente en la mayoría de los suelos del área de abasto del ingenio se encuentra en niveles bajos con valores desde menores a 1.0 hasta 1.99, (Figura 14), Con base en lo anterior, se sugiere realizar prácticas de recuperación del suelo como incorporación de residuos de cosecha y composte para mejorar las condiciones físico-químicas del suelo que permitan reducir la compactación del mismo y optimizar la airoción y el crecimiento de las raíces, e incrementar
gradualmente la productividad de las áreas productoras de caña. Es bien sabido que el contiuo laboreo del suelo aunado a la quema del cultivo para la cosecha, atenta contra la estructura del suelo, el arreglo de los poros y sólidos afectando el abastecimiento de oxígeno, agua y nutrientes a la solución del suelo adyacente a las raíces.

Densidad aparente

La densidad aparente se define como el cociente que resulta de dividir el peso de suelo seco entre el volumen total y es una expresión que indica el contenido total de macro y micros poros presentes en él; así mismo, es un valor importante para determinar el manejo de los suelos ya que denota el nivel de compactación y por ende la facilidad con que ocurre la movilización de aire, agua y nutrientes dentro de él. Los factores que la afectan son principalmente la textura, la estructura y la presencia de materia orgánica, de tal forma que los suelos con texturas arenosas son relativamente bajos en el espacio poroso total y proporcionalmente tienen densidades aparentes más altas que los suelos de textura fina.

El número, la variedad de plantas y los organismos del suelo que se encuentran en un área determinada, son afectados por la densidad del suelo. La densidad aparente depende también de factores como la densidad de las partículas de suelo mineral, la compactación, la actividad de la mesofauna del suelo, como la lombriz de tierra que forma galerías en el perfil, y la abundancia de raíces de plantas.

La densidad aparente se suele utilizar como una medida de la estructura del suelo y es un buen indicador de la condición física del mismo, ya que refleja el grado de compactación del suelo, el estado de la porosidad, el nivel de aireación y la capacidad de infiltración en el suelo.

La compactación del suelo puede ser vista como un proceso de densificación que se relaciona con el colapso de los macroporos, provocado en primer lugar, por una carga o presión externa que supera la resistencia mecánica de la estructura del suelo, lo que ocasiona cambios en la ruptura de la relación original entre los sólidos y poros, que da
como resultado un nuevo arreglo de partículas. Con este tipo de degradación, el suelo experimenta cambios que restringen la permeabilidad y el crecimiento de las raíces en los campos agrícolas.

La mayor parte de la superficie del área de abasto del Ingenio "El Dorado" tiene una densidad aparente sin compactación o ligeramente compactada como se puede ver en la Figura 15, con valores menores a 1.2 g/cm³ y no mayores de 1.4 g/cm³, lo cual indica que no se tienen problemas de captación y almacenamiento de agua, ni en la movilización de los nutrientes, de igual forma, no presentan resistencia importante a la penetración o al desarrollo de las raíces. Lo anterior es una condición favorable para lograr una buena producción agrícola rentable y sustentable. Con base en lo anterior los suelos de esta región pueden clasificarse como de buena calidad.

Capacidad de almacenamiento de humedad del suelo

La capacidad de almacenamiento de humedad del suelo (CAHS), representa el contenido de agua que retiene en condiciones naturales un suelo saturado contra la fuerza de gravedad (Steubing et al., 2002). La CAHS está condicionada tanto por la textura como por la estructura, debido a la cantidad y tamaño de los poros existentes en los mismos. Entrev más franco y arcilloso sea un suelo, su capacidad de retención de agua es mayor debido a su mayor área superficial, ya que tienen un mayor espacio poroso total que los suelos arenosos. Esta diferencia se debe al mayor número de microporos que funcionan en la retención del agua y oxígeno en el suelo, también es mayor la capacidad de solución de nutrientes que permite un adecuado desarrollo de las plantas que trae consigo una mayor productividad de la caña de azúcar.

Las arcillas, junto con la materia orgánica determinan la Capacidad de Intercambio Catiónico (CIC) de los suelos y junto con una adecuada proporción de agua y oxígeno, brindan la nutrición mineral necesaria para que desarrolle un cultivo y su producción sea óptima.
En el área de abasto del ingenio, la mayoría de los suelos tienen una capacidad de almacenamiento de humedad alta (Figura 16) con valores entre 75 a 100 mm en los primeros 60 cm, lo que indica que los suelos en las áreas productoras de caña de azúcar pueden retener el agua de riego por más tiempo retardando el efecto del estrés hídrico, lo cual es apropiado para la producción de caña de azúcar.

Conductividad eléctrica

En general, el flujo de electricidad a través de un conductor es debido a un transporte de electrones. Según la forma de llevarse a cabo este transporte, los conductores eléctricos pueden ser de dos tipos: conductores metálicos o electrónicos y conductores iónicos o electrofósicos. A este segundo tipo pertenecen las disoluciones acuosas del suelo; la conductividad eléctrica se puede emplear como una medida para determinar los iones solubles totales presentes en el suelo y relacionar la concentración salina en base de peso en los extractos suelo - agua. Este parámetro puede ayudar a determinar las necesidades de calidad de agua para riego y drenaje; además, se puede relacionar con la respuesta de las plantas a las sales solubles expresadas en términos de conductividad eléctrica del extracto de saturación.

Las sales disueltas en agua se descomponen en iones cargados positivamente y negativamente. Los iones positivos son sodio (Na+), calcio (Ca2+), potasio (K+) y magnesio (Mg2+). Los iones negativos son cloruro (Cl−), sulfato (SO42−), carbonato y bicarbonato. Los nitratos y fosfatos no contribuyen de forma apreciable a la conductividad aunque son muy importantes biológicamente.

En términos agronómicos, cuando se mide la conductividad eléctrica del agua de riego, una disolución de fertilizante, el extracto acuoso de un suelo, etc., se determina la conductividad específica (k) de dicha disolución. Actualmente se emplea la unidad del Siemens (S), equivalente a mmhos.
En el área de abasto del ingenio, casi la totalidad de la superficie tiene valores de conductividad eléctrica menores de 1 mmhos/cm. (Figura 17), clasificándolo como suelo no salino y de acuerdo a lo señalado por la FAO, citado por Ruiz (1999) el área de abasto del ingenio “El Dorado” tiene un valor de salinidad que teóricamente no reduce la productividad de la caña de azúcar, por lo tanto se considera que esta variable no compromete el rendimiento del cultivo en la región.

La salinidad es una medida de la cantidad de sales disueltas en el agua, por lo tanto, la salinidad y la conductividad eléctrica están relacionadas entre sí, porque la cantidad de iones disueltos aumentan los valores de ambas.

Potencial hidrógeno del suelo

El pH es una de las medidas que se realizan con mayor frecuencia en los suelos ya que regula un gran número de procesos. Indica la acidez o alcalinidad; muchas reacciones químicas dependen del pH y éste puede usarse para predecir la velocidad y el equilibrio de dichas reacciones. Además la disponibilidad de diferentes nutrientes depende fuertemente del pH.

La mayoría de los suelos del área de abasto del ingenio “El Dorado” presentan valores de pH entre 6.6 a 8.3 (Figura 18), que corresponden a la clasificación de suelos neutros o moderadamente alcalinos y de acuerdo a lo señalado por la FAO, citado por Ruiz (1999) el área de abasto del ingenio está dentro de los valores apropiados que requiere el cultivo de caña de azúcar para su óptima producción, por lo se puede afirmar que esta variable no compromete el rendimiento del cultivo.
Figura 11. Contenido de arena en el área de abastecimiento del Ingenio “El Dorado”.
Figure 12. Contenido de limo en el área de abastecimiento del ingenio "El Dorado".
Figura 13. Contenido de arcilla en el área de abastecimiento del Ingenio "El Dorado".
Figura 14. Contenido de materia orgánica en el área de abastecimiento del Ingenio "El Dorado".
Figura 15. Densidad aparente en el área de abastecimiento del Ingenio “El Dorado”.
Figura 10. Capacidad de almacenamiento hídrico del suelo en el área de abasto del Ingenio "El Dorado".
Figura 17. Conductividad eléctrica en el área de abastecimiento del Ingenio "El Dorado".
Figura 18. pH en el área de abastecimiento del Ingenio "El Dorado".
6. CONCLUSIONES

La precipitación promedio que ocurre en el área de abastecimiento del Ingenio “El Dorado”, es de poco más de 530 mm al año, lo cual es insuficiente para cubrir de manera natural los requerimientos hídricos del cultivo de caña de azúcar; así mismo, se determinó que existe una distribución irregular de la misma, sobre todo en la época de enero a abril, en que la precipitación es menor que la evaporación y la evapotranspiración potencial, que obliga a la aplicación de riego para evitar el estrés por sequía y reducción drástica del rendimiento de sacarosa.

Se determinó que durante todo el año, la zona de abasto de este ingenio tiene condiciones térmicas ambientales apropiadas para la producción de caña de azúcar, por lo que la temperatura no es un factor que pudiera limitar el desarrollo del cultivo y menos aún si se habla de temperatura mínima, ya que es una zona libre de heladas.

La mayor parte del área de abasto del ingenio tiene suelos pobres de materia orgánica, por lo que es necesario incrementar su contenido, para elevar el promedio de producción en el área de abasto y mejorar las propiedades físicas, químicas y biológicas del suelo.

Cerca del 80% del área de abastecimiento, corresponde a suelos moderadamente alcalinos, lo cual limita la productividad de la caña de azúcar; siendo necesario en éstos, implementar algunas prácticas que permitan disminuir el pH para incrementar la productividad de la caña de azúcar.

Aproximadamente 80% del área de abastecimiento del ingenio, tiene una capacidad de almacenamiento de agua media en los primeros 80 cm de profundidad, ya que es capaz de almacenar entre 60 y 75 mm de agua.
7. LITERATURA CITADA

8. AGRADECIMIENTO

Los autores de esta publicación desean hacer público su reconocimiento a los C. Ing. Luis Manuel Báez Borja, Gerente general del ingenio “El Dorado” e Ing. Isidro Rodríguez Gaxiola, Superintendente general de campo, por su valiosa colaboración al proporcionar información fundamental para la realización del análisis de las variables reportadas en este documento.
CARACTERIZACIÓN CLIMÁTICA Y EDÁFICA
DEL ÁREA DE ABASTECIMIENTO DEL
INGENIO "EL DORADO", CULIACÁN, SINALOA

Comité Editorial Campo Experimental Pabellón

Dr. Alfonso Peña Ramos
Dr. Guillermo Sánchez Martínez
Ing. Francisco Javier Robles Escobedo
M.C. Fernando González Casañeda
M.C. Luis Martín Macías Valdez
M.C. María de Jesús Torres Meza

En el proceso de editorial participaron las siguientes personas:

Edición:
M.C. Fernando González Casañeda
M.C. Ernesto González Gaona

Diseño:
M.A. M. Ed. María Elvira Tabobo Aranda
L.I. Armando Collazo González

CAMPO EXPERIMENTAL PABELLÓN
Kilómetro 32.5 Carretera Aguascalientes-Zacatecas
Apartado postal No. 20
Pabellón de Arteaga, Ags., 20660

Tel: (465) 958-01-61
Fax: (465) 958-01-86

Página Web: http://www.inifap.gob.mx
http://clima.inifap.gob.mx
CARACTERIZACIÓN CLIMÁTICA Y EDÁFICA DEL ÁREA DE ABASTECIMIENTO DEL INGENIO "EL DORADO", CULIACÁN, SINALOA

Los resultados de esta publicación fueron obtenidos con recursos del proyecto:

Predicción de Cosechas en zonas cañeras de México
Financiado por SAGARPA - PRONAC

Esta publicación se terminó de imprimir en el mes de Noviembre de 2009

Imprenta Melón Digital
General Barragán 129
Centro Histórico
C.P. 20000
Tel. (449) 915 47 56
Aguascalientes, Ags., México.
ventas@melondigital.com

Tiraje: 501 ejemplares
Grup de investigadores
del Programa Nacional de Predicción de Sacarosa de Caña de Azúcar

CAMPO EXPERIMENTAL PABELLÓN

Dr. Alfonso Peña Ramos ... Director de Coordinación y Vinculación

PERSONAL INVESTIGADOR

M.C. Omar Iván Santana ... Bioenergéticos
Dr. Esteban Salvador Osuna Ceja ... Conservación de Suelo y Agua
Dr. Guillermo Sánchez Martínez ... Conservación y Protección Forestal
Ing. Francisco Javier Robles Escobedo Difusión Técnica
M.C. Ernesto González Gaona .. Entomología
Dr. José Saúl Padilla Ramírez .. Fisiología de Cultivos
Ing. Candelario Serrano Gómez .. Fitopatología
Dr. Manuel Antonio Gálindo Reyes .. Frutales Caducifolios
M.C. Luis Martín Macías Valdez .. Hortalizas
Ing. Octavio Benjamín Cisneros Rodríguez Mecanización
Ing. Francisco Garibaldi Márquez ... Mecanización
M.C. René Félix Domínguez López .. Mecanización
M.C. Marco Antonio Cortés Chamorro Mecanización
M.C. Miguel Ángel Perales de la Cruz Nuevas Opciones
M.C. Fernando González Castañeda ... Nutrición Animal
Dra. Alma Delia Báez González .. Predicción de Cosechas
Ing. Jorge Alberto Collazo González Predicción de Cosechas
M.C. Miguel Ángel González González Predicción de Cosechas
Ing. José Luis Ramos González .. Predicción de Cosechas
M.C. Víctor Manuel Rodríguez Moreno Predicción de Cosechas
M.C. María de Jesús Torres Meza .. Predicción de Cosechas
M.C. Esperanza Quezada Guzmán .. Recursos Naturales
M.C. Luis Humberto Maciel Pérez .. Relación Agua-Suelo-Planta
Dr. Renato Raúl Lozano Domínguez Reproducción Animal
M.Sc. Abraham de Alba Ávila .. Recursos Naturales
M.C. Erick Baltazar Brenes .. Socioeconomía