COMPONENTES TECNOLÓGICOS PARA LA PRODUCCIÓN DE ENSILADOS DE MAÍZ Y SORGO

Agosto de 1999

Instituto Nacional de Investigaciones Forestales Y Agropecuarias
Centro de Investigación Regional Norte Centro
Campo Experimental La Laguna
SECRETARÍA DE AGRICULTURA, GANADERÍA Y DESARROLLO RURAL

Ing. ROMÁRICO ARROYO MARROQUÍN
Secretario

M.V.Z. FRANCISCO GURRÍA TREVIÑO
Subsecretario de Agricultura y Ganadería

Ing. JOSÉ ANTONIO MENDOZA ZAZUETA
Subsecretario de Desarrollo Rural

Lic. ANDRÉS CASCO FLORES
Subsecretario de Planeación

INSTITUTO NACIONAL DE INVESTIGACIONES FORESTALES, AGRÍCOLAS Y PECUARIAS

Ing. JORGE KONDO LÓPEZ
Director en Jefe

Dr. DAVID MORENO RICO
Director General de Coordinación y Desarrollo

Dr. RODRIGO AVELDAÑO SALAZAR
Director General de la División Agrícola

M.V.Z. DIEGO BRAÑA VARELA
Director General de la División Pecuaria

Dr. CARLOS RODRÍGUEZ FRANCO
Director General de la División Forestal

Ing. JAVIER ROSALES INZUNZA
Director General de Administración

CENTRO DE INVESTIGACIÓN REGIONAL DEL NORTE CENTRO

Ing. ABELARDO REYNOZA VEGA
Director Regional

Dr. ABELARDO NUÑEZ BARRIOS
Director División Agrícola

Dr. SERGIO ECHAVARRÍA MORALES
Director División Pecuaria

Ing. GAUDENCIO BARRAGÁN PONCE DE LEÓN
Director División Forestal

Dr. ARTURO D. TIJERINA CHÁVEZ
Director de Coordinación y Vinculación Estatal
de la Región Lagunera
COMPONENTES TECNOLÓGICOS PARA LA PRODUCCIÓN DE ENSILADOS DE MAÍZ Y SORGO

Dr. Gregorio Núñez Hernández
Ing. M.C. Fco. Eduardo Contreras G.
Ing. M.C. Rodolfo Faz Contreras
Dr. Rolando Herrera y Saldaña

Agosto de 1999

Instituto Nacional de Investigaciones Forestales Y Agropecuarias
Centro de Investigación Regional Norte Centro
Campo Experimental La Laguna
CONTENIDO

PRESENTACION..1

SELECCIÓN DE HIBRIDOS PARA OBTENER MAYOR RENDIMIENTO
Y ALTO VALOR ENERGETICO EN MAIZ PARA ENSILAJE ...2

MANEJO DE LA DENSIDAD DE PLANTAS EN MAIZ PARA ENSILAJE..6

MOMENTO OPTIMO DE COSECHA EN MAIZ PARA ENSILAJE..15

PROCESO DE ENSILAJE DEL MAIZ...20

PARCELAS DEMOSTRATIVAS DE NUEVOS HIBRIDOS DE MAIZ Y
VARIEDADES DE SORGO PARA ENSILAJE...30

LA IMPORTANCIA DE LOS MAICES Y SORGOS MEJORADOS PARA
LA PRODUCCION DE ENSILAJE ..47
PRESENTACION

La región Lagunera se ha caracterizado por el desarrollo de la ganadería lechera a un nivel de producción que la coloca como la principal cuenca productora de leche del país. Una actividad básica dentro de la actividad lechera es la producción de forrajes. El alto nivel de producción del ganado lechero en la región, ha originado un cambio de enfoque en la producción de los forrajes hacia obtener la mayor producción posible, pero también un alto valor nutritivo y utilizar eficientemente el agua de riego.

El Campo experimental La Laguna del INIFAP, inició diferentes proyectos de investigación y demostración a partir de 1995, inicialmente con el apoyo económico del Patronato para la Investigación Agropecuaria de La Laguna (PIAL) y posteriormente ha recibido apoyo a través de las fundaciones Produce de Coahuila y Durango. Los proyectos que se llevan a cabo nacen en respuesta a las necesidades de los propios productores y los resultados obtenidos se han dado a conocer sistemáticamente en los predios de ellos mismos, mediante módulos demostrativos y días de campo. Lo anterior ha sido posible con la participación de destacados productores de forraje y leche y de la Gerencia de Asistencia Técnica del Grupo LALA y el PIAL, que conjuntamente con los investigadores del INIFAP han trabajado en la realización de los proyectos y la difusión de los resultados. Los propietarios y encargados de los predios han tenido un papel fundamental apoyando los trabajos con sus propios recursos, a todos ellos vaya nuestro reconocimiento por sus desinteresada participación, así como a las Compañías de Semillas en la región con las que se ha trabajado en convenio con el COTERSE.

En la presente publicación se presentan los avances más relevantes del Proyecto “Alternativas para incrementar la eficiencia en el uso de agua, rendimiento y valor nutritivo de ensilados de maíz y sorgo” con objeto de que sean de utilidad a los ganaderos de la región y del país.

Dr. Arturo D. Tijerina Chávez
Director de Coordinación y Vinculación del INIFAP en la región Lagunera
3 de Agosto de 1999
SELECCIÓN DE HIBRIDOS PARA OBTENER MAYOR RENDIMIENTO Y ALTO VALOR ENERGETICO EN MAÍZ PARA ENSILAJE

Gregorio Núñez Hernández
Eduardo F. Contreras Govea
Rodolfo Faz Contreras
Rolando Herrera y S.

El maíz es un forraje con una alta productividad de materia seca y eficiencia en el uso del agua de riego. El ensilado de maíz se caracteriza por contenidos bajos de proteína y minerales, pero su valor energético es alto. Sin embargo, en México, los ensilados de maíz tienen un valor energético bajo, debido principalmente a su pobre contenido de grano y altas concentraciones de fibra. Lo anterior se atribuye a que se ha dado énfasis sólo al rendimiento o producción de forraje por unidad de superficie (por hectárea), sin considerar el valor nutritivo del forraje. Entre las estrategias de investigación en forrajes para la producción de ensilados de maíz de alto valor energético, la selección del híbrido es fundamental.

Por una parte algunos híbridos de maíz aún presentan las características consideradas como forrajeras en el pasado, como son un porte alto y con mucho follaje. Por otro lado existe el debate sobre si los híbridos de maíz etiquetados como productores de grano también son adecuados para la producción de ensilaje, ya que se han observado que existe una relación positiva entre el rendimiento de grano y la producción total de materia seca por hectárea. Las evidencias indican que la selección de híbridos de maíz en base a información que integre aspectos agronómicos y calidad nutritiva para fines forrajeros, proporciona los mejores resultados.

El valor nutritivo de la materia seca en maíz se explica considerando el follaje (hojas más tallos) y grano. La digestibilidad de estos componentes varía de 53.0 a 65.1 % (por ciento) para follaje y de 88.7 a 93.9 % para grano, diferencias que pueden
causar una relación directa entre el contenido de grano y la digestibilidad o valor energético en ensilados de maíz, aunque también pueden existir relaciones entre la digestibilidad de la materia seca y la digestibilidad de hojas y tallos.

En estudios que se llevan a cabo desde 1995 en el Campo Experimental La Laguna, se ha observado que la producción de materia seca por hectárea no está relacionado con el rendimiento de grano ó al porcentaje de mazorca de los híbridos. La producción de materia seca por hectárea tampoco está relacionada con la altura de planta o color del grano. De igual manera, tampoco existen correlaciones entre el rendimiento de materia seca y el valor energético, lo cual significa que se debe seleccionar los híbridos para ambos aspectos.

Las estimaciones de energía neta de lactancia de los híbridos se han relacionado satisfactoriamente con la digestibilidad determinada en laboratorio --in vitro (DIV)--. La digestibilidad se relaciona positivamente con el porcentaje de mazorca (que es una forma sencilla de expresar el contenido de grano). La digestibilidad también está asociada negativamente con las concentraciones de Fibra Detergente Neutro (FDN), Fibra Detergente Acido (FDA) y la lignina, aunque esta última relación varía de año a año por lo que su utilidad es más limitada.

La digestibilidad de hojas y tallos y sus concentraciones de FDN y FDA puede ser diferente entre híbridos, pero su grado de relación con la digestibilidad total de las plantas enteras ha sido baja ó no significativa (r=0.42) en los híbridos estudiados. Se ha observado también que las concentraciones de FDN y FDA en hojas y tallos no están relacionadas con los contenidos de estas fracciones de fibra en las plantas enteras. Esto significa que el factor más importante que determina la digestibilidad y energía neta de lactancia, así como el contenido de fibra a través de un efecto de dilución es el contenido de grano ó porcentaje de mazorca.
En el Cuadro 1 se presentan las características de maíces híbridos para diferentes valores de Energía Neta de Lactancia (EN) derivadas de las relaciones que se han determinado en diferentes estudios en la Región.

![Diagrama de energía neta de lactancia y mazorca](image)

\[y = 0.008x + 1.1061 \]
\[r^2 = 0.5182 \]

Figura 1. Relación entre el contenido de mazorca y la energía neta de lactancia de híbridos de maíz para ensilaje.

Usualmente en la región se utilizaban híbridos de maíz con un valor energético de 1.3 megacalorías por kilogramo de materia seca. Sin embargo, a partir de la información obtenida se pueden seleccionar híbridos de maíz con más de 54% de mazorca; con concentraciones de Fibra Detergente Neutro y Fibra Detergente Acido menores de 55 y 28%, respectivamente, asegurando una digestibilidad in vitro de la materia seca mayor de 68 % y una energía neta de lactancia de 1.5 megacalorías o más por kilogramo de materia seca.
Cuadro 1. Características de híbridos de maíz para ensilaje con diferentes valores energéticos en la Región Árida de México.

<table>
<thead>
<tr>
<th>EN$_i$, Mcal/kg de MS</th>
<th>Digestibilidad in vitro, %</th>
<th>Mazorca, %</th>
<th>FDN, %</th>
<th>FDA, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.3</td>
<td>57</td>
<td>25</td>
<td>68</td>
<td>36</td>
</tr>
<tr>
<td>1.4</td>
<td>63</td>
<td>40</td>
<td>60</td>
<td>32</td>
</tr>
<tr>
<td>1.5</td>
<td>69</td>
<td>50</td>
<td>52</td>
<td>28</td>
</tr>
<tr>
<td>1.6</td>
<td>75</td>
<td>62</td>
<td>44</td>
<td>24</td>
</tr>
</tbody>
</table>

Bibliografía

MANEJO DE LA DENSIDAD DE PLANTAS EN MAÍZ PARA ENSILAJE

Gregorio Núñez Hernández

En la producción de maíz, una de las prácticas agronómicas más comunes para incrementar la producción de materia seca y grano por hectárea es aumentar la densidad de plantas por unidad de superficie. Respecto a la producción de materia seca por hectárea, esta aumenta con la densidad de plantas hasta llegar a ser constante, aunque esta relación puede ser diferente entre híbridos como se observa en la Figura 1, en un experimento con híbridos de hojas erectas y normales en un clima semiárido templado (Núñez et al. 1996).

![Gráfica de respuesta de híbridos de maíz con diferente tipo de hojas a la densidad de plantas](image)

Figura 1. Respuesta de híbridos de maíz con diferente tipo de hojas a la densidad de plantas.
Generalmente se recomienda que la densidad de plantas de maíz por hectárea para ensilaje sea mayor que para producción de grano. Varios investigadores recomiendan una densidad de 80 a 90 mil plantas por hectárea en maíz para ensilaje (Bangarwa et al., 1988; Seglar, 1996). Aunque se ha observado que el rendimiento de materia seca por hectárea aumenta con densidades mayores de 80 mil plantas/ha, sobre todo en híbridos que tienen hojas erectas, la producción de grano por hectárea disminuye o se mantiene a densidades mayores que la mencionada. Como consecuencia, se ha observado que la digestibilidad de un kilogramo de materia seca se reduce aún en híbridos de hojas erectas (Rohr y Wermke, 1985; Printer et al., 1990). En la Figura 2, se muestra como disminuyó la digestibilidad in vivo en borregos en jaulas metabólicas alimentados con ensilados de maíz producidos con diferente densidades de plantas (Núñez et al. 1994).

Figura 2. Efecto de la densidad de plantas en la digestibilidad in vivo en maíz para ensilaje.
Al aumentar la densidad de plantas también disminuye la energía neta de lactancia por kilogramo de materia seca debido a la reducción en la digestibilidad como resultado del menor contenido de grano y mayor contenido de fibra de las plantas. Por otra parte, en vacas lecheras altas productoras, la disminución de la digestibilidad y densidad energética en un kilogramo de materia seca es crítica, ya que puede limitar la cantidad de ensilado que se puede incluir en las raciones. Seglar (1996) sugiere en base a la mayoría de los estudios sobre este tema, utilizar una densidad de alrededor de 80-90 mil plantas por hectárea para la producción de ensilados de alto valor nutritivo que se vayan a emplear en la alimentación de vacas lecheras altas productoras.

Bibliografía

MANEJO DE RIEGOS EN LA PRODUCCIÓN DE MAÍZ FORRAJERO

Rodolfo Faz Contreras
Gregorio Nuñez Hernandez
Francisco E. Contreras Govea

El agua es el recurso que más limita la agricultura en la Región Lagunera. En maíz para forraje, el agua es uno de los factores que tienen más impacto en la producción. Para hacer un uso eficiente del agua disponible es necesario conocer la relación que existe entre la producción de un cultivo y el agua que consume, llamada esta última evapotranspiración; en la Figura 1 se presenta esta relación para diferentes híbridos de maíz. La producción de forraje es función directa del agua usada por el cultivo, lo cual significa que el cultivo produce la misma cantidad de forraje por cada metro cúbico de agua utilizado, desde siembra hasta cosecha. De la Figura presentada se deduce que se obtienen 2.91 kg por metro cúbico de agua aplicada.

Aunque la producción de forraje seco de maíz es función directa del agua aplicada como lo muestra la Figura 1, no sucede los mismo con otras características deseables para obtener un buen forraje, como lo es el contenido de grano, el cual llega a representar entre un 30 y un 40 por ciento de la materia seca total que produce el cultivo. El grano incrementa de manera significativa la calidad del forraje, reflejándose en la producción de ensilados de alta energía para el ganado.

En los Cuadros 1 y 2 se presentan los resultados obtenidos en experimentos realizados en los ciclos de primavera 1997 y 1998. El calendario de tres riegos de auxilio puede afectar significativamente el rendimiento de materia seca por hectárea como en 1998, además también aumenta el porcentaje de materia seca, que es una característica muy importante para tener una buena fermentación en el silo.
Figura 1. Relación entre el consumo de agua y la producción de materia seca por hectárea de híbridos de maíz para ensilaje.

Cuadro 1. Efecto del número de riegos en la producción de maíz para forraje en dos años de estudio.

<table>
<thead>
<tr>
<th>No. De Riegos</th>
<th>Materia seca, %</th>
<th>Forraje verde, ton/ha</th>
<th>Forraje seco ton/ha</th>
<th>Mazorca %</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 AUXILIOS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1997</td>
<td>42.06</td>
<td>48.95</td>
<td>20.58</td>
<td>43.50</td>
</tr>
<tr>
<td>1998</td>
<td>35.29</td>
<td>37.72</td>
<td>11.18</td>
<td>15.42</td>
</tr>
<tr>
<td>4 AUXILIOS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1997</td>
<td>34.83</td>
<td>58.12</td>
<td>20.25</td>
<td>48.10</td>
</tr>
<tr>
<td>1998</td>
<td>29.95</td>
<td>40.10</td>
<td>14.05</td>
<td>26.68</td>
</tr>
</tbody>
</table>

La falta de aplicación del último riego disminuye el porcentaje de mazorca y aumenta el contenido de fibra detergente neutro (FDN) de la materia seca, lo que
ocasiona una reducción en la energía neta de lactancia de la materia seca (EN). La aplicación del riego durante el llenado del grano permite una mayor producción y valor energético del maíz para ensilaje, a la vez que mantiene o aumenta la eficiencia en términos de energía neta de lactancia por kilogramo de materia seca (Cuadros 1 y 2).

Cuadro 2. Efecto del número de riegos en el valor nutritivo del maíz para ensilaje en dos años de estudio.

<table>
<thead>
<tr>
<th>Riegos</th>
<th>FDN, %</th>
<th>Energía neta Mcal/kg de MS</th>
<th>Eficiencia en el uso del agua Mcal/m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 Auxilios</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1997</td>
<td>50.50</td>
<td>1.50</td>
<td>4.7</td>
</tr>
<tr>
<td>1998</td>
<td>62.17</td>
<td>1.39</td>
<td>2.2</td>
</tr>
<tr>
<td>4 Auxilios</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1997</td>
<td>43.18</td>
<td>1.65</td>
<td>4.3</td>
</tr>
<tr>
<td>1998</td>
<td>56.93</td>
<td>1.46</td>
<td>3.3</td>
</tr>
</tbody>
</table>

En base a los resultados de los experimentos anteriores, se ha generado un calendario de riegos que optimiza la secuencia de períodos húmedos y secos durante el ciclo del cultivo del maíz para obtener un rendimiento óptimo tanto de forraje seco como de su calidad, a la vez que se menciona la lámina de agua que debe aplicarse en cada riego.

Para maíces de ciclo intermedio, que son los más comúnmente sembrados en la región, se ha determinado que sus requerimientos de humedad se cubren con una lámina total de 80 centímetros, considerando un 15 % de ineficiencia en la aplicación de cada riego. Esta lámina debe distribuirse en un riego de presiembra de 20 centímetros más cuatro riegos de auxilio de 15 centímetros cada uno. Los auxilios pueden ser
aplicados de acuerdo al calendario de riegos de auxilio que se presenta en el Cuadro 3, para un suelo de textura arcillo-arenoso.

Cuadro 3. Calendario de riegos de auxilio en dds\(^{(1)}\) para maíz forrajero y etapas de desarrollo con que coinciden.

<table>
<thead>
<tr>
<th>Auxilios</th>
<th>Etapa de desarrollo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aplicación</td>
<td>Del cultivo</td>
</tr>
<tr>
<td>1er. Auxilio</td>
<td>Encaje, inicio de crecimiento del tallo.</td>
</tr>
<tr>
<td>(30-35 dds)</td>
<td></td>
</tr>
<tr>
<td>2do. Auxilio</td>
<td>Inicio de crecimiento de mazorca. (^{(2)})</td>
</tr>
<tr>
<td>(50-55 dds)</td>
<td></td>
</tr>
<tr>
<td>3er. Auxilio</td>
<td>Inicio de aparición de estigmas (jiloteo).</td>
</tr>
<tr>
<td>(65-69 dds)</td>
<td></td>
</tr>
<tr>
<td>4to. Auxilio</td>
<td>Grano lechoso (elote).</td>
</tr>
<tr>
<td>(80-85 dds)</td>
<td></td>
</tr>
</tbody>
</table>

DDS\(^{(1)}\) = (dds) Días acumulados y contados a partir de la fecha de siembra.

\(^{(2)}\) Entre los 8 a 10 días antes de que emergan las espigas.

Con este calendario de riegos de auxilio, se cubren las deficiencias de humedad durante el desarrollo del cultivo y se puede programar de manera óptima la aplicación oportuna de los riegos en maíz, de tal manera que el cultivo muestre su máximo potencial de producción de forraje.
Algunas consideraciones que deben tomarse en cuenta al aplicar cada uno de los riegos:

Riego de presiembra. Aplicarlo con anticipación de modo que la tierra “de punto” dentro de la época o período de siembra determinado como apropiado para el maíz forrajero en la región. A partir de la fecha de siembra, empieza la cuenta de acumulación de días, para programar y aplicar los riegos de auxilio, según el calendario mencionado anteriormente.

Primer riego de auxilio. Favorece principalmente el buen desarrollo de hojas, tallos y en menor grado los granos de la mazorca. No aplicar o retrasar la aplicación de este riego puede reducir en un 40 % la producción de forraje.

Segundo riego de auxilio. Apoya el inicio de un rápido crecimiento de la mazorca. Favorece el crecimiento del tamaño de la mazorca y en menor grado la acumulación de materia seca en hojas y tallos. No aplicar o retrasar este riego ocasiona una reducción del 27 % la producción de forraje.

Tercer riego de auxilio. Este riego cubre la etapa de desarrollo de polinización o “jiloteo” de la mazorca, que es el período más crítico en el proceso de la formación del grano. Al no aplicarlo o retrasarlo puede reducirse en un 27 % la producción del forraje esperado y un 69 por ciento el contenido de grano en el forraje.

Cuarto riego de auxilio. Apoya el llenado de grano. No aplicar o retrasar este riego propicia tener un forraje con menor calidad. La reducción del rendimiento puede ser de un 28 % de la producción de forraje esperado, que corresponde totalmente a grano.

CONCLUSIONES

* La producción de forraje seco es función directa del agua aplicada al cultivo del maíz.

* La calidad de forraje de maíz también es afectada si los requerimientos de agua del cultivo no se cubren de manera oportuna y satisfactoria.
Bibliografía

Faz, C.R. y G. Reta. 1990. Importancia del número y oportunidad de los riegos en el cultivo del maíz en la Comarca Lagunera. 5ª demostración de cultivos básicos. Publicación especial. CAELALA-INIFAP-SARH.

MOMENTO OPTIMO DE COSECHA EN MAIZ PARA ENSILAJE

Gregorio Núñez Hernández
Francisco E. Contreras G.
Rodolfo Faz C.
Rolando Herrera y S.

El maíz es un forraje con alta productividad y concentración de energía, siempre y cuando la cosecha se efectúe en el momento oportuno. Por muchos años la cosecha de maíz para ensilaje se realizó cuando el grano estaba en estado lechoso-masoso ó masoso.

Posteriormente en la literatura científica se propuso utilizar el concepto de la “línea de leche”, como un mejor criterio para determinar el momento oportuno y óptimo de corte del maíz para ensilaje.

¿Qué es la línea de leche?

Este término se refiere a línea que marca el avance de endurecimiento en la maduración de los granos, dividiendo las zonas de almidón líquido y sólido. El avance de esta línea va de la parte de afuera hacia el oloete o centro de la mazorca. Lo anterior se puede observar en forma fácil, notoria y visual, sobre todo en los híbridos amarillos, y con más cuidado en maíces de grano blanco.

En maíces híbridos de ciclo intermedio la cosecha o corte en estado lechoso-masoso o masoso usualmente se efectúa de los 80 a 95 días después de la fecha de siembra, mientras que el corte en estado a $1/3$ de la línea de leche se requieren de 90 a 110 días, lo cual, depende del híbrido y las temperaturas que se presenten durante el ciclo.
¿Qué beneficios se tienen al cosechar a 1/3 de línea de leche?

Se ha observado un mayor rendimiento de materia seca por hectárea cuando se corta a 1/3 de la línea en comparación al corte en estado lechoso o lechoso-masoso. Sin embargo los rendimientos de materia seca son similares a cuando se corta después del estado masoso. Por otro lado el contenido de materia seca es de 22 a 28% cuando se corta en lechoso a masoso, mientras que en estado de 1/3 de la línea de leche es de 30 a 35%, el cual, es más apropiado para tener una buena fermentación durante el proceso de ensilaje del maíz. Harrison (1995) señala que el contenido óptimo de materia seca del maíz para ensilaje es de 28 a 35%.

Figura 1. Porcenaje de mazorca y concentración de fibra detergente neutro (FDN) en maíz cosechado a tres estados de madurez.
En cuanto a porcentaje de mazorca, mientras en maíz cortado en estado masoso tiene un 25% de mazorca, cuando se corta a $\frac{1}{3}$ de la línea de leche este porcentaje aumenta a más del 40%. Por otra parte el contenido de fibra detergente neutro disminuye a menos de 60%.

Figura 2. Digestibilidad \textit{in vitro} en maíz cosechado a tres estados de madurez.
Como el porcentaje de mazorca está relacionado positivamente con la digestibilidad y la energía neta de lactancia del ensilado, los valores de estos aumentan cuando se cosecha en estado de $\frac{1}{3}$ de la línea de leche en el grano (Figura 2).

Estudios con vacas lecheras en producción reportados en la literatura indican que vacas alimentadas con ensilaje de maíz cortado entre $\frac{1}{3}$ a $\frac{1}{2}$ de línea de leche producen un litro más de leche por vaca por día, en comparación con vacas alimentadas con ensilaje de maíz cortado en estado masoso. Sin embargo, la producción puede bajar hasta 1.5 litros por vaca por día cuando el ganado se alimenta con ensilaje de maíz que se cortó cuando el grano presentó un avance de más de un $\frac{1}{2}$ de la línea de leche, o cercano a cuando aparece la capa negra en el grano donde este se inserta en la mazorca (madurez fisiológica).

Lo anterior se debe a que cuando los granos se acercan a la madurez pasan a través del tracto digestivo del ganado, sin que el almidón sea digerido totalmente y muchos granos aparecen en las excretas del ganado. Esto también trae como consecuencia que disminuya la síntesis de proteína bacteriana en el rumen, lo cual explica la reducción en la producción de leche con ensilados cortados muy maduros.

La interacción entre híbridos y estado de madurez no ha sido significativa en la Región. Por esta razón es recomendable que la mayoría de los híbridos que se empleen para ensilaje se corten en estado de 1/3 de la línea de leche.
Bibliografía

PROCESO DE ENSILAJE DEL MAÍZ

Gregorio Núñez Hernández
Francisco E. Contreras Govea

La conservación es un aspecto importante en la utilización de forrajes. El objetivo del ensilaje es evitar grandes pérdidas de materia seca y mantener el valor nutritivo del forraje. El proceso de ensilaje es muy antiguo y data desde antes de la era cristiana; sin embargo, continuamente se logran avances, por lo que el propósito de esta publicación es presentar información reciente sobre aspectos del proceso de ensilaje.

La Fermentación en el silo

En el proceso de ensilaje pueden ocurrir cuatro tipos de fermentaciones que diferen en su eficiencia energética (Cuadro 1). La fermentación deseada se inicia una vez que el aire ha sido excluido y las enzimas de la respiración de las plantas cesan su funcionamiento. Entonces da inicio una fermentación aneróbica en la cual, ciertas bacterias producen ácido láctico y otros productos de menor importancia a partir de los azúcares presentes en el material ensilado (Fermentación primaria). Sin embargo, algunas veces estas bacterias son antecedidas por bacterias productoras de ácido acético, lo cual, puede ocasionar un aumento en la temperatura durante el ensilaje. La consecuencia de los procesos mencionados es una reducción en el pH que inhibe la acción de otro tipo de bacterias que no son deseadas (Ejem: Clostridium), ya que causan substancias mal olientes y provocan el deterioro del ensilado (Fermentación secundaria).
Cuadro 1. Tipos de fermentación que pueden ocurrir durante el proceso de ensilaje.

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Reacción</th>
<th>Eficiencia %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homofermentativa</td>
<td>Glucosa \rightarrow ácido láctico</td>
<td>97</td>
</tr>
<tr>
<td>Heterofermentativa</td>
<td>Glucosa \rightarrow ácido láctico + etanol + CO$_2$</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td>Fructosa \rightarrow ácido láctico + manitol + ácido ácetico + CO$_2$</td>
<td>98</td>
</tr>
<tr>
<td>Clostridial</td>
<td>ácido láctico \rightarrow ácido butírico láctico + CO$_2$ + H$_2$</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>Alanina \rightarrow ácido propiónico + ácido ácetico + NH$_3$ + CO$_2$</td>
<td>81</td>
</tr>
<tr>
<td>Levaduras</td>
<td>Glucosa \rightarrow etanol + CO$_2$</td>
<td>-</td>
</tr>
</tbody>
</table>

La producción de ácido láctico es producto de una sucesión de bacterias diferentes de acuerdo a la tolerancia que tienen a los cambios que van ocurriendo durante el proceso de ensilaje. Las bacterias del género *Streptococcus* son las menos tolerantes y aparecen primero, posteriormente se desarrollan los *Lactobacillus* y al final los *Pediococcus*, los cuales, son los más tolerantes.

La forma en que se desarrolla la fermentación en el silo es muy importante (Figura 1). En las etapas iniciales, se debe reducir la acción de las bacterias aeróbicas que ocasionan la degradación de compuestos químicos, así como promover la
inhibición de la respiración celular para evitar incrementos excesivos en la temperatura, que puedan ocasionar reacciones indeseables entre proteínas y carbohidratos.

En las etapas intermedias, la reducción del pH debe llegar a 5.5-5.7, para estimular la actividad de las bacterias productoras de ácido láctico. Un contenido de humedad de >70% promueve la producción de ácido acético, mientras que si es <70% estimula la producción de ácido butírico.

En la etapa final del proceso, es importante alcanzar un pH de 3.8 a 4.2; aunque en leguminosas como la alfalfa se llega solo a un pH alrededor de 4.0-4.7. Lograr una fermentación dominada por la producción de ácido láctico es importante por dos razones: 1) El ácido láctico es el ácido más fuerte y por lo tanto tiene mayor capacidad para bajar el pH rápidamente, 2) El ácido láctico produce ensilados con olor y sabor aceptables por los rumiantes. La importancia de obtener una reducción rápida en el pH, radica en que previene la fermentación clostridial y preserva la proteína del forraje.

Figura 1. Fases de la fermentación durante el ensilaje.
Como promover una buena fermentación durante el ensilaje

El contenido de materia seca es uno de los factores más importantes para asegurar un buen ensilaje y minimizar las pérdidas por calentamiento o escorrimento de líquidos. En general, el contenido de materia seca debe ser de 28 a 35% en silos horizontales y de 30 a 40% en bolsas de polietileno. Este contenido de materia seca también varía según el tipo de forraje. En maíz y sorgo se recomienda un contenido de materia seca de 29 a 38%, mientras que en cereales es de 28 a 33%. En el caso de la alfalfa el contenido de materia seca puede llegar a ser de 35 a 40%. Los forrajes con alto contenido de humedad como los cereales y otras gramíneas cortadas en estado muy tierno o leguminosas, es necesario cortarlos y dejarlos secar parcialmente en el campo hasta lograr los contenidos recomendados de materia seca.

En el ensilaje de forrajes con demasiada humedad se tienen pérdidas mayores de nitrógeno y carbohidratos solubles a través de los escorrimientos de líquidos, y se presentan fermentaciones butíricas y clostridiales. El ensilaje de forrajes muy secos no permite la exclusión del aire y se pueden desarrollar hongos. El ensilaje de forraje con contenido excesivo de humedad se puede contrarrestar el efecto preservativo de un pH de 4.0, y presentarse actividad clostridial, mientras que en forrajes con mayor contenido de materia seca, la acción de la clostridia es inhibida por la falta de humedad.

El tamaño de partícula es también importante en la exclusión del aire a través del apisonado y sellado del silo. Se considera que un tamaño de picado de 1.0 a 2.5 cm es apropiado. El llenado del silo, apisonado y sellado es muy importante para lograr las condiciones anaeróbicas para una buena fermentación. Las pérdidas en un silo sellado son de 5-15%, mientras que en un silo mal sellado estas pueden ser de 25 a 50%, presentándose dichas pérdidas principalmente en las capas superiores. En ensilajes bien sellados se tiene un pH más apropiado para la fermentación, y la digestibilidad puede ser mayor a 5 unidades porcentuales en comparación con silos sin sellar o mal sellados. El silo debe llenarse lo más rápido posible, cubrirse con polietileno y anclarse con tierra, llantas, etc. Una práctica conveniente para presevar el ensilado es la
aplicación de sal común en la parte superior antes de tapar con plástico, a razón de 3-4 kg/m².

La extracción del ensilado se debe hacer raspando la cara del silo hacia abajo con una pala mecánica dejando una pared lisa, y posteriormente recogiéndolo del piso, en lugar de palear el frente (Figura 1). La extracción debe ser al menos en capas de 10 a 15 cm. Para minimizar las pérdidas durante la extracción es mejor tener silos largos y angostos que permitan un avance más rápido en la extracción.

![Diagrama de extracción de ensilado](image)

Figura 2. Formas de extracción de los forrajes ensilados.
Otra opción para tener una buena fermentación en el silo es el uso de aditivos. Existen diferentes tipos de aditivos, pero los más populares actualmente son los inoculantes bacterianos. En la década de los 90’s, se ha hecho mucho énfasis en el uso de inoculantes bacterianos en el ensilaje de forrajes para ayudar a obtener una fermentación apropiada, disminuir pérdidas de materia seca y mejorar la producción del ganado alimentado con este tipo de forrajes. No obstante el cúmulo de información obtenida mediante investigaciones en varias partes del mundo, aún existe escépticismo en los productores sobre el empleo de estos productos.

¿Qué son los inoculantes bacterianos?

Los inoculantes bacterianos son productos que contienen una ó más especies de bacterias productoras de ácido láctico seleccionadas por su competitividad para crecer en ambientes con diferentes condiciones de humedad, temperatura y acidez, así como por su capacidad para producir ácido láctico en períodos cortos de tiempo. Los principales tipos de bacterias en estos productos son: Lactobacillus, principalmente la especie plantarum, Pediococcus y Enterococcus (Streptococcus) faecium.

¿Efectos esperados en la fermentación?

Los efectos de la adición de inoculantes bacterianos son ayudar a garantizar una fermentación eficiente en el proceso de ensilaje que permita la preservación de la materia seca y el mejoramiento del valor nutritivo. La adición de inoculantes bacterianos puede permitir bajar el pH más rápido para minimizar la población de organismos detrimentales que producen ácidos acético o butírico, los cuales propician fermentaciones que causan pudriciones, mal aspecto u olor a los ensilados, también se puede limitar la actividad de enzimas en las plantas que degradan la proteína verdadera a compuestos no proteicos.

¿Efectos observados en la fermentación?

Muck (1997) señala en una revisión de trabajos con inoculantes bacterianos, que estos productos ayudaron a disminuir el pH y la producción de ácido láctico en el 60%
de estudios llevados a cabo, observándose más éxito en ensilados de zacates y leguminosas, y en menor grado con cereales de grano pequeño. En cuanto a la preservación de la proteína, también se observó que los inoculantes bacterianos tuvieron efectos positivos. En cincuenta porciento de los casos la recuperación de forraje se mejoró en un 6%. Este efecto se atribuye a que se disminuyen las pérdidas causadas tanto en la fermentación como por hongos. En relación al deterioro de los ensilados en el pesebre, se observaron efectos positivos en el 30% de los casos. En un porcentaje similar, también se observó aumentos en digestibilidad de aproximadamente 5%.

¿Cuándo no son efectivos los inoculantes bacterianos?

Existen diferentes causas que pueden explicar el fracaso de estos productos. Por ejemplo, cuando la población natural de bacterias es superior a la generada con el inoculante. Para evitar esta situación se sugiere lograr una población de bacterias generadas por el inoculante al menos del 10% de la población natural. Otro factor es el tipo de forraje, se ha encontrado que las bacterias son más efectivas cuando se utilizan en los forrajes de donde fueron aisladas, es decir el tipo de inoculante debe ser específico para el forraje que se va ensilar. Otra situación es cuando el contenido de azucares en el forraje es bajo, debido a que los azucares son el principal substrato de estas bacterias para la producción de ácido láctico. Esta situación se puede presentar en forraje con alto contenido de materia seca y en alfalfa.

El ataque de organismos bacteriófagos a las bacterias productoras de ácido láctico también disminuyen la efectividad de los inoculantes. Se ha observado que esta situación se presenta en forrajes con alto contenido de humedad y cuando se tienen ensilajes de baja calidad.

¿Existe algún beneficio en la producción de los animales con la utilización de inoculantes bacterianos?

Kung y Muck (1997) en una revisión de estudios al respecto, indican respuestas positivas en el consumo de materia seca, ganancia de peso del ganado, y producción
de leche en el 28, 53, y 47 % de los estudios efectuados al respecto. En estudios realizados específicamente con inoculantes conteniendo Lactobacillus plantarum se mejoró el consumo de materia seca y la producción de leche en 0.5 kg de materia seca por día y 1.2 litros de leche por vaca por día, respectivamente. Estos efectos positivos han sido observados en diferentes cultivos como zacates, maíz y alfalfa. En la mayoría de las veces cuando la producción del ganado se incrementó, también se observó un aumento en la digestibilidad de los ensilados; sin embargo, en algunos casos dicha situación no se presentó. A la fecha, es difícil explicar como los inoculantes bacterianos pueden mejorar la digestión de los animales en el rumen. Weinberg y Muck (1996) sugirieron que los inoculantes bacterianos pueden tener un efecto probiótico inhibiendo organismos detrimentales en el ensilado o un efecto similar al que tienen los probioticos en el rumen del ganado.

¿Cómo se puede obtener el mayor beneficio de los inoculantes bacterianos?

En base a las evidencias que existen en este momento, se pueden hacer las siguientes recomendaciones. Compre un producto que especifique el tipo de forraje en que se debe usar. Si no existe en el mercado local, emplee otro producto que sea para un cultivo similar, por ejemplo para gramineas como cereales se puede emplear inoculante para maíz, y en el caso de leguminosas, se puede utilizar inoculante para alfalfa.

Elija un producto que suministre al menos 90 billones de bacterias vivas productoras de ácido. Observe que las bacterias que contenga sean al menos una de las siguientes: Lactobacillus, principalmente especie plantarum, así como Enterococcus (Streptococcus) o Pediococcus. Si el producto contiene Propionibacterium, estas bacterias son productoras de ácido propiónico y mejoran la estabilidad de los ensilados en el comedero, pero no la fermentación en el silo; además que generalmente son menos efectivas, ya que no son tan competitivas como las bacterias productoras de ácido láctico, excepto en condiciones donde ocurren fermentaciones lentas. Si los productos contienen otro tipo de bacterias que las mencionadas, se debe sospechar sobre su efectividad y obtener asesoría al respecto. El producto aplicado en forma
liquida puede permitir una aplicación más uniforme que un producto en polvo. Otro aspecto importante a considerar es el agua que se emplea en la aplicación de inoculantes bacterianos líquidos, sobre todo su contenido de cloro, ya que éste mata las bacterias productoras de ácido láctico. Finalmente, es mejor aplicar el inoculante bacteriano al momento del picado que en el silo. Es importante señalar que la utilización de inoculantes bacterianos no sustituye las prácticas comunes recomendadas para un buen ensilaje (Harrison, 1995; Bolsen, 1996).

En resumen para un ensilaje exitoso es conveniente seguir los siguientes pasos:

1. Coseche cuando el avance de la línea de leche sea 1/3 en los granos de maíz y el porcentaje de materia seca de 29 a 38%.
2. Triture el forraje a un tamaño de partícula de 1.0 a 2.5 cm y ensile rápidamente.
3. Compacte el forraje fuerte y rápidamente durante el llenado del silo, sobre todo en las orillas de las paredes en los silos de "bunker".
4. Aplique inoculantes bacterianos apropiados para promover una fermentación eficiente.
5. Selle muy bien para evitar pérdidas grandes en la capa superior del ensilado.
6. Abra el silo por lo menos después de tres semanas.
7. Corte la cara del ensilado verticalmente, evite "palear la cara del ensilado" para no permitir la entrada del aire.
Bibliografía

PARCELAS DEMOSTRATIVAS DE NUEVOS HIBRIDOS DE MAÍZ Y VARIEDADES DE SORGO PARA ENSILAJE.

Francisco E. Contreras Govea
Rodolfo Faz Contreras
Gregorio Nuñez Hernández.
Rolando Herrera y Saldaña.

El ensilado de maíz y sorgo son forrajes de uso común en las raciones del ganado bovino lechero. En años pasados, el ensilado fue considerado solo como fuente de fibra de la ración y no como un componente importante por su calidad nutritiva. Sin embargo en años recientes, el ensilaje de maíz dejó de ser un forraje de relleno, para constituirse como un componente importante de la ración.

Como parte importante de los cambios en la calidad de los ensilajes, se han evaluado nuevos híbridos de maíz y variedades de sorgo con mejores características en contenido de grano, calidad de fibra y valor nutritivo que los hacen más deseables para obtener ensilajes de alto valor energético.

El objetivo de este trabajo fue transferir a los productores los resultados de las evaluaciones de híbridos y variedades de maíz y sorgo de alto rendimiento y valor nutricional mediante parcelas demostrativas.

Hasta 1994 en la Región Lagunera, las evaluaciones de maíz y sorgo para forraje se realizaban tradicionalmente dentro del campo experimental La Laguna. A partir de 1995, dichas evaluaciones se complementaron con parcelas demostrativas en predios de la región a solicitud del Patronato para la Investigación Agropecuaria de la Laguna (PIAL), con la participación de las compañías de semillas de la región y la Gerencia de Asistencia Técnica del Grupo LALA. Los ranchos donde se han establecido las parcelas demostrativas son:

Ciclo primavera de 1995:
Híbridos de maíz evaluados: 15

2. P.P. El Cercado (Sr. Don Salvador Alvarez D.)
4. CELALA

Ciclo primavera de 1996:
Híbridos de maíz evaluados: 24
Variedades de sorgo: 12

1. P.P. El Cercado
2. P.P. Providencia (Lic. Braulio Fernández A.)
4. CELALA

Ciclo primavera de 1997:
Híbridos de maíz evaluados: 17
Variedades de sorgo: 8

1. P.P. Las Vegas (Lic. Carlos Martín B.)
2. P.P. La Unión.
3. P.P. Venecia (Sr. Don Ramón Iriarte M.).
4. CELALA.

Ciclo primavera de 1998.
Híbridos de maíz evaluados: 46
Variedades de sorgo: 28

1. P.P. La Partida (Lic. Braulio Fernández A.)

Chalupa (1995) mencionó que el ensilaje de maíz en México tenía un menor valor energético (1.32 Mcal/kg EN₄) en relación a los ensilajes en Estados Unidos. En la evaluación realizada el primer año, se identificaron varios híbridos de maíz con un valor energético de 1.46 a 1.58 Mcal/kg de EN₄ (Cuadro 1), con lo cual, se vio la factibilidad de mejorar el valor nutritivo de los ensilajes en la región.

En los años siguientes se han introducido nuevos híbridos de maíz con características deseables para un alto potencial de producción y valor nutritivo, observándose algunos híbridos con valores hasta de 1.72 Mcal/kg de EN₄ y
digestibilidad in vitro de 72.0 % (Cuadros 2, 3 y 4). Solo un número pequeño de híbridos se han sembrado repetidamente en los cuatro años, por lo cual los híbridos sobresalientes han sido diferentes cada año. Los híbridos de maíz mostrados en los cuadros 1, 2 y 3 son los más sobresalientes en términos de valor nutritivo, y los del cuadro 4 son los sobresalientes en rendimiento de forraje de ese año.

En 1996 se iniciaron las parcelas de variedades de sorgo de grano y sorgo forrajero para ensilar. Los resultados en los primeros años mostraron que el valor nutritivo de un sorgo de grano es mejor a un sorgo forrajero, aunque en otros años el valor energético de ambos sorgos fue similar; de igual forma, la diferencia en producción de forraje seco por hectárea entre un sorgo de grano y un forrajero se ha ido disminuyendo (cuadros 5, 6 y 7). Esto indica que puede ser posible disponer de variedades forrajeras con buen valor energético o variedades de grano con mejor potencial de rendimiento de forraje. Los resultados de todos los híbridos de maíz y variedades de sorgo evaluadas se presentan en los Cuadros anexos.

<table>
<thead>
<tr>
<th>Híbrido</th>
<th>Forraje Seco ton/ha</th>
<th>Digestibilidad in vitro, %</th>
<th>EN<sub>i</sub> Mcal/kg MS</th>
</tr>
</thead>
<tbody>
<tr>
<td>3002 W</td>
<td>24.21</td>
<td>67.68</td>
<td>1.58</td>
</tr>
<tr>
<td>AS-951</td>
<td>25.26</td>
<td>68.71</td>
<td>1.50</td>
</tr>
<tr>
<td>3066 W</td>
<td>22.58</td>
<td>68.14</td>
<td>1.49</td>
</tr>
<tr>
<td>GC-6256</td>
<td>22.87</td>
<td>69.60</td>
<td>1.48</td>
</tr>
<tr>
<td>3292</td>
<td>26.93</td>
<td>69.34</td>
<td>1.46</td>
</tr>
<tr>
<td>D-801-B</td>
<td>23.11</td>
<td>66.09</td>
<td>1.46</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Híbrido</th>
<th>Forraje Seco ton/ha</th>
<th>Digestibilidad in vitro, %</th>
<th>EN₁ Mcal/kg MS</th>
</tr>
</thead>
<tbody>
<tr>
<td>GC6260</td>
<td>17.16</td>
<td>67.09</td>
<td>1.54</td>
</tr>
<tr>
<td>ICI-Garst8285</td>
<td>20.56</td>
<td>69.36</td>
<td>1.50</td>
</tr>
<tr>
<td>SB – 302</td>
<td>18.23</td>
<td>72.15</td>
<td>1.52</td>
</tr>
<tr>
<td>A7573</td>
<td>18.09</td>
<td>68.94</td>
<td>1.55</td>
</tr>
<tr>
<td>D – 880</td>
<td>17.79</td>
<td>68.24</td>
<td>1.51</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Híbrido</th>
<th>Forraje Seco ton/ha</th>
<th>Digestibilidad in vitro, %</th>
<th>EN₁ Mcal/kg MS</th>
</tr>
</thead>
<tbody>
<tr>
<td>C 7990</td>
<td>18.71</td>
<td>68.06</td>
<td>1.61</td>
</tr>
<tr>
<td>A7576</td>
<td>17.99</td>
<td>66.07</td>
<td>1.52</td>
</tr>
<tr>
<td>C398</td>
<td>15.45</td>
<td>67.29</td>
<td>1.48</td>
</tr>
<tr>
<td>Genex – 710</td>
<td>15.40</td>
<td>66.39</td>
<td>1.48</td>
</tr>
</tbody>
</table>

Cuadro 4. Híbridos de maíz sobresalientes en producción y valor nutricional de forraje durante 1998 *.

<table>
<thead>
<tr>
<th>Híbrido</th>
<th>Forraje verde ton/ha</th>
<th>Forraje seco ton/ha</th>
<th>EN₁ Mcal/kg MS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Big laker</td>
<td>70.22</td>
<td>21.77</td>
<td>1.30</td>
</tr>
<tr>
<td>Ranchero</td>
<td>60.00</td>
<td>20.28</td>
<td>1.39</td>
</tr>
<tr>
<td>Exp.9644</td>
<td>58.52</td>
<td>18.62</td>
<td>1.41</td>
</tr>
<tr>
<td>Ciclón</td>
<td>46.96</td>
<td>17.08</td>
<td>1.37</td>
</tr>
<tr>
<td>N7989</td>
<td>64.44</td>
<td>16.36</td>
<td>1.59</td>
</tr>
<tr>
<td>Exp.9813</td>
<td>77.19</td>
<td>16.08</td>
<td>1.52</td>
</tr>
<tr>
<td>3025</td>
<td>52.44</td>
<td>16.01</td>
<td>1.63</td>
</tr>
<tr>
<td>A7575</td>
<td>55.41</td>
<td>15.93</td>
<td>1.43</td>
</tr>
<tr>
<td>3069</td>
<td>59.85</td>
<td>15.62</td>
<td>1.43</td>
</tr>
<tr>
<td>N7590</td>
<td>55.41</td>
<td>15.57</td>
<td>1.72</td>
</tr>
<tr>
<td>Relámpago</td>
<td>45.93</td>
<td>15.31</td>
<td>1.41</td>
</tr>
</tbody>
</table>

* En este año no se obtuvieron los valores de digestibilidad in vitro.

<table>
<thead>
<tr>
<th>Variedad</th>
<th>Forraje Seco ton/ha</th>
<th>Digestibilidad in vitro, %</th>
<th>EN<sub>l</sub> Mcal/kg MS</th>
</tr>
</thead>
<tbody>
<tr>
<td>D – 65</td>
<td>14.90</td>
<td>65.91</td>
<td>1.49</td>
</tr>
<tr>
<td>MARFIL</td>
<td>12.90</td>
<td>68.07</td>
<td>1.48</td>
</tr>
<tr>
<td>DIAMANTE</td>
<td>13.80</td>
<td>67.73</td>
<td>1.47</td>
</tr>
<tr>
<td>8133 W</td>
<td>13.30</td>
<td>62.85</td>
<td>1.46</td>
</tr>
<tr>
<td>FAME</td>
<td>11.40</td>
<td>59.55</td>
<td>1.45</td>
</tr>
<tr>
<td>Beefbuilder (F)</td>
<td>17.16</td>
<td>55.02</td>
<td>1.41</td>
</tr>
</tbody>
</table>

F= sorgo forrajero.

<table>
<thead>
<tr>
<th>Variedad</th>
<th>Forraje Seco ton/ha</th>
<th>Digestibilidad in vitro, %</th>
<th>EN<sub>l</sub> Mcal/kg MS</th>
</tr>
</thead>
<tbody>
<tr>
<td>8133</td>
<td>12.23</td>
<td>57.63</td>
<td>1.46</td>
</tr>
<tr>
<td>CB-111</td>
<td>12.11</td>
<td>58.96</td>
<td>1.46</td>
</tr>
<tr>
<td>SILO MIEL (F)</td>
<td>18.36</td>
<td>56.33</td>
<td>1.47</td>
</tr>
<tr>
<td>NK –367 (F)</td>
<td>19.51</td>
<td>54.39</td>
<td>1.45</td>
</tr>
</tbody>
</table>

Cuadro 7. Variedades de sorgo grano y sorgo forrajero sobresalientes en producción y valor nutricional durante 1998 *.

<table>
<thead>
<tr>
<th>Variedad</th>
<th>Forraje verde ton/ha</th>
<th>Forraje seco Ton/ha</th>
<th>EN<sub>l</sub> Mcal/kg de MS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silo Miel</td>
<td>78.67</td>
<td>17.73</td>
<td>1.45</td>
</tr>
<tr>
<td>8133 (grano)</td>
<td>51.11</td>
<td>15.77</td>
<td>1.45</td>
</tr>
<tr>
<td>947</td>
<td>53.19</td>
<td>15.28</td>
<td>1.45</td>
</tr>
<tr>
<td>ICI 5503 (grano)</td>
<td>41.48</td>
<td>15.08</td>
<td>1.49</td>
</tr>
<tr>
<td>CB111 (grano)</td>
<td>60.44</td>
<td>14.91</td>
<td>1.45</td>
</tr>
<tr>
<td>All forage</td>
<td>77.04</td>
<td>14.79</td>
<td>1.41</td>
</tr>
<tr>
<td>Honey Graze</td>
<td>49.04</td>
<td>14.76</td>
<td>1.45</td>
</tr>
</tbody>
</table>

* En este año no se obtuvieron los valores de digestibilidad in vitro.
Conclusiones

1. En 4 años del establecimiento de parcelas demostrativas en predio de productores se han evaluado 73 diferentes híbridos de maíz y 36 variedades de sorgo grano y forrajero.

2. Se han identificado híbridos de maíz de alto rendimiento de forraje y más de 1.5 Mcal de ENL / kg y valores de digestibilidad de hasta 72.0 %.

3. Los sorgos de grano han mostrado valores más altos de digestibilidad in vitro que los sorgos forrajeros, aunque estas diferencias a veces no se han detectado con la espectroscopia en el cercano infrarrojo (NIR).

Bibliografía.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>12. ABT632</td>
<td>ABT</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>26. ABT7000y</td>
<td>ABT</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>33. ABT6000y</td>
<td>ABT</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>45. ABT21</td>
<td>ABT</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>A7500</td>
<td>ASGROW</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>A7573</td>
<td>ASGROW</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>A7520</td>
<td>ASGROW</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>A7545</td>
<td>ASGROW</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>A7597</td>
<td>ASGROW</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>A7575</td>
<td>ASGROW</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Delfín</td>
<td>ASGROW</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>AS-951</td>
<td>ASPROS</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AN-447</td>
<td>ASPROS</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SB303</td>
<td>BERENTSEN</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SB302</td>
<td>BERENTSEN</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>SB347</td>
<td>Berentsen</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>C820</td>
<td>CARGILL</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>C7990</td>
<td>Cargill</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>C398</td>
<td>Cargill</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>C922</td>
<td>Cargill</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>C805</td>
<td>CARGILL</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>C908</td>
<td>CARGILL</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>HURACAN</td>
<td>CERES</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>TORNADO</td>
<td>CERES</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>CICLON</td>
<td>CERES</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>TRUENO</td>
<td>CERES</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>RELAMPAGO</td>
<td>CERES</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Rendiror</td>
<td>Conlee</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Ranchero</td>
<td>Conlee</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>B-844</td>
<td>Dekalb</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>PP 9141</td>
<td>Dekalb</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>D-801-B</td>
<td>Dekalb</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>DK646</td>
<td>DEKALB</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>D880</td>
<td>DEKALB</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>D810</td>
<td>DEKALB</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>D865</td>
<td>Dekalb</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>D867</td>
<td>Dekalb</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>Exp.9812</td>
<td>Dekalb</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Exp.9644</td>
<td>Dekalb</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Exp.9813</td>
<td>Dekalb</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>D848</td>
<td>DEKALB</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DK888</td>
<td>DEKALB</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>NC + 7881</td>
<td>FARIAS Y ASOC.</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8285</td>
<td>GARST GENEX</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GENEX710</td>
<td>Germain`s</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>GC6256</td>
<td>GERMAIN'S</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GC6260</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICI8325</td>
<td>Ici-garst</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICI8314</td>
<td>Ici-garst</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICI8315</td>
<td>Ici-garst</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N7580</td>
<td>Novartis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N7989</td>
<td>Novartis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N6800</td>
<td>Novartis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N7816</td>
<td>Novartis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N7590</td>
<td>Novartis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N6330</td>
<td>Novartis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GILSA 120</td>
<td>GILSA</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>3292</td>
<td>Pioneer</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3066W</td>
<td>Pioneer</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3288W</td>
<td>Pioneer</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>3002W</td>
<td>Pioneer</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>1183W</td>
<td>Pioneer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3044W</td>
<td>Pioneer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3162W</td>
<td>Pioneer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3028W</td>
<td>Pioneer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3025</td>
<td>Pioneer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3230</td>
<td>Pioneer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3167</td>
<td>Pioneer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3069</td>
<td>Pioneer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Producers</td>
<td>Semillas</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Productivas</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stauffer</td>
<td>Semillas</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>productivas</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advantage</td>
<td>Versa</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Big laker</td>
<td>Versa</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>-------------------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>Fame</td>
<td>ABT</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SR101</td>
<td>ABT</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DIAMANTE</td>
<td>ASGROW</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>ESMERALDA</td>
<td>ASGROW</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MARFIL</td>
<td>ASGROW</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB111</td>
<td>Berentsen</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Kikapu</td>
<td>Berentsen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cowittles</td>
<td>Conlee</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>X58W</td>
<td>Conlee</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Domor</td>
<td>Conlee</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D-65</td>
<td>DEKALB</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICI5536</td>
<td>Filsa</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>ICI5429</td>
<td>Filsa</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>ICI5503</td>
<td>Filsa</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Silo Miel</td>
<td>Genex</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SILO MILO</td>
<td>GENEX</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>XM217</td>
<td>Novaratis</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>XM438</td>
<td>Novartis</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>8428</td>
<td>Pioneer</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>947</td>
<td>Pioneer</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>8232</td>
<td>Pioneer</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>8118</td>
<td>Pioneer</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>841-F</td>
<td>Pioneer</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8133</td>
<td>Pioneer</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Silo sugar</td>
<td>Serv. Agrícolas</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kingold 870</td>
<td>Serv. Agrícolas</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SweetStar</td>
<td>Serv. Agrícolas</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kingold 860</td>
<td>Serv. Agrícolas</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HoneyGraze</td>
<td>Serv. Agrícolas</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kingold 880</td>
<td>Serv. Agrícolas</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kingold 850</td>
<td>Serv. Agrícolas</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Happy cow</td>
<td>Sinsa</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All forage</td>
<td>Versa</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boss</td>
<td>Versa</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hi energy</td>
<td>Fariñas y Asoc.</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NK-367</td>
<td>NK</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Híbrido</th>
<th>Forraje seco ton/ha</th>
<th>FDN %</th>
<th>EN<sub>i</sub> Mcal/kg</th>
<th>Digestibilidad in vitro, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>GC6260</td>
<td>22.09</td>
<td>55.38</td>
<td>1.48</td>
<td>70.56</td>
</tr>
<tr>
<td>GC6256</td>
<td>22.87</td>
<td>56.46</td>
<td>1.48</td>
<td>69.60</td>
</tr>
<tr>
<td>3292</td>
<td>26.93</td>
<td>56.38</td>
<td>1.46</td>
<td>69.34</td>
</tr>
<tr>
<td>AN447</td>
<td>22.19</td>
<td>58.56</td>
<td>1.44</td>
<td>68.97</td>
</tr>
<tr>
<td>AS951</td>
<td>25.26</td>
<td>55.27</td>
<td>1.50</td>
<td>68.71</td>
</tr>
<tr>
<td>3066W</td>
<td>22.58</td>
<td>54.40</td>
<td>1.49</td>
<td>68.14</td>
</tr>
<tr>
<td>C820</td>
<td>21.28</td>
<td>59.99</td>
<td>1.42</td>
<td>67.88</td>
</tr>
<tr>
<td>3002W</td>
<td>24.21</td>
<td>53.73</td>
<td>1.58</td>
<td>67.68</td>
</tr>
<tr>
<td>A7500</td>
<td>20.04</td>
<td>57.69</td>
<td>1.43</td>
<td>66.94</td>
</tr>
<tr>
<td>PP9141</td>
<td>23.46</td>
<td>60.98</td>
<td>1.40</td>
<td>66.90</td>
</tr>
<tr>
<td>B844</td>
<td>25.00</td>
<td>62.81</td>
<td>1.34</td>
<td>66.45</td>
</tr>
<tr>
<td>D801B</td>
<td>23.11</td>
<td>58.96</td>
<td>1.46</td>
<td>66.09</td>
</tr>
<tr>
<td>A773</td>
<td>19.52</td>
<td>60.79</td>
<td>1.40</td>
<td>65.25</td>
</tr>
<tr>
<td>HURACAN</td>
<td>24.39</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TORNADO</td>
<td>25.66</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Cuadro 11. Rendimiento de forraje seco y valor nutritivo de híbridos de maíz evaluados en 1996.

| Híbrido | Forraje seco ton/ha | FDN % | EN, Mcal/kg | Digestibilidad
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6260</td>
<td>17.16</td>
<td>51.18</td>
<td>1.54</td>
<td>67.09</td>
</tr>
<tr>
<td>NC+7881</td>
<td>22.49</td>
<td>55.99</td>
<td>1.46</td>
<td>66.60</td>
</tr>
<tr>
<td>DK-646</td>
<td>18.88</td>
<td>57.93</td>
<td>1.41</td>
<td>69.11</td>
</tr>
<tr>
<td>6256</td>
<td>17.09</td>
<td>57.38</td>
<td>1.43</td>
<td>65.07</td>
</tr>
<tr>
<td>Icigarst8285</td>
<td>20.56</td>
<td>53.89</td>
<td>1.50</td>
<td>69.36</td>
</tr>
<tr>
<td>1183</td>
<td>15.68</td>
<td>50.24</td>
<td>1.56</td>
<td>67.61</td>
</tr>
<tr>
<td>A7545</td>
<td>17.24</td>
<td>59.06</td>
<td>1.38</td>
<td>65.13</td>
</tr>
<tr>
<td>D810</td>
<td>19.34</td>
<td>62.66</td>
<td>1.35</td>
<td>63.67</td>
</tr>
<tr>
<td>SB302</td>
<td>18.23</td>
<td>52.99</td>
<td>1.52</td>
<td>72.15</td>
</tr>
<tr>
<td>3288</td>
<td>19.49</td>
<td>61.67</td>
<td>1.42</td>
<td>67.60</td>
</tr>
<tr>
<td>TRUENO</td>
<td>15.37</td>
<td>61.77</td>
<td>1.36</td>
<td>52.51</td>
</tr>
<tr>
<td>A7573</td>
<td>18.09</td>
<td>51.14</td>
<td>1.55</td>
<td>68.94</td>
</tr>
<tr>
<td>3044</td>
<td>17.05</td>
<td>54.47</td>
<td>1.41</td>
<td>68.08</td>
</tr>
<tr>
<td>D880</td>
<td>17.79</td>
<td>54.64</td>
<td>1.51</td>
<td>68.24</td>
</tr>
<tr>
<td>SB303</td>
<td>18.99</td>
<td>53.07</td>
<td>1.39</td>
<td>70.00</td>
</tr>
<tr>
<td>3162</td>
<td>17.63</td>
<td>56.90</td>
<td>1.36</td>
<td>66.78</td>
</tr>
<tr>
<td>CICLON</td>
<td>16.20</td>
<td>63.54</td>
<td>1.35</td>
<td>60.62</td>
</tr>
<tr>
<td>TESTIGO</td>
<td>13.80</td>
<td>61.57</td>
<td>1.35</td>
<td>64.57</td>
</tr>
<tr>
<td>A7520</td>
<td>19.77</td>
<td>55.57</td>
<td>1.36</td>
<td>64.00</td>
</tr>
<tr>
<td>G-710</td>
<td>20.12</td>
<td>59.60</td>
<td>1.38</td>
<td>62.40</td>
</tr>
<tr>
<td>3028</td>
<td>20.37</td>
<td>58.67</td>
<td>1.39</td>
<td>65.24</td>
</tr>
<tr>
<td>A7597</td>
<td>19.66</td>
<td>56.96</td>
<td>1.42</td>
<td>66.16</td>
</tr>
<tr>
<td>3002W</td>
<td>18.56</td>
<td>56.58</td>
<td>1.45</td>
<td>65.72</td>
</tr>
<tr>
<td>A7500</td>
<td>17.51</td>
<td>58.18</td>
<td>1.39</td>
<td>64.45</td>
</tr>
</tbody>
</table>
Cuadro 12. Rendimiento de forraje seco y valor nutritivo de variedades de sorgo evaluados en 1996.

<table>
<thead>
<tr>
<th>Variedad</th>
<th>Forraje seco ton/ha</th>
<th>FDN %</th>
<th>EN\textsubscript{i} Mcal/kg</th>
<th>Digestibilidad in vitro, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>CB-111</td>
<td>12.5</td>
<td>51.08</td>
<td>1.60</td>
<td>66.71</td>
</tr>
<tr>
<td>ESMERALDA</td>
<td>7.7</td>
<td>53.68</td>
<td>1.52</td>
<td>65.97</td>
</tr>
<tr>
<td>D-65</td>
<td>14.9</td>
<td>47.85</td>
<td>1.49</td>
<td>65.91</td>
</tr>
<tr>
<td>MARFIL</td>
<td>12.9</td>
<td>50.73</td>
<td>1.48</td>
<td>68.07</td>
</tr>
<tr>
<td>TESTIGO1</td>
<td>10.6</td>
<td>51.97</td>
<td>1.47</td>
<td>64.17</td>
</tr>
<tr>
<td>DIAMANTE</td>
<td>13.8</td>
<td>50.09</td>
<td>1.46</td>
<td>67.73</td>
</tr>
<tr>
<td>8133W</td>
<td>13.3</td>
<td>56.68</td>
<td>1.46</td>
<td>62.85</td>
</tr>
<tr>
<td>FAME</td>
<td>11.4</td>
<td>55.99</td>
<td>1.45</td>
<td>59.55</td>
</tr>
<tr>
<td>841F</td>
<td>14.1</td>
<td>56.68</td>
<td>1.43</td>
<td>59.43</td>
</tr>
<tr>
<td>HI-ENERGY</td>
<td>18.1</td>
<td>59.53</td>
<td>1.43</td>
<td>52.64</td>
</tr>
<tr>
<td>SILO MIEL</td>
<td>19.0</td>
<td>58.08</td>
<td>1.41</td>
<td>55.68</td>
</tr>
<tr>
<td>TESTIGO2</td>
<td>17.2</td>
<td>56.86</td>
<td>1.41</td>
<td>55.02</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Híbrido</th>
<th>Forraje seco ton/ha</th>
<th>FDN %</th>
<th>EN<sub>i</sub> Mcal/kg</th>
<th>Digestibilidad in vitro, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>3002</td>
<td>14,90</td>
<td>56,40</td>
<td>1,45</td>
<td>63,31</td>
</tr>
<tr>
<td>DK888</td>
<td>17,83</td>
<td>57,80</td>
<td>1,43</td>
<td>61,55</td>
</tr>
<tr>
<td>C398</td>
<td>14,02</td>
<td>53,48</td>
<td>1,48</td>
<td>67,29</td>
</tr>
<tr>
<td>G-710</td>
<td>12,82</td>
<td>53,08</td>
<td>1,48</td>
<td>66,39</td>
</tr>
<tr>
<td>SB302</td>
<td>13,61</td>
<td>56,69</td>
<td>1,41</td>
<td>63,82</td>
</tr>
<tr>
<td>GILSA120</td>
<td>15,35</td>
<td>60,52</td>
<td>1,37</td>
<td>61,26</td>
</tr>
<tr>
<td>TESTIGO</td>
<td>12,01</td>
<td>58,22</td>
<td>1,38</td>
<td>60,08</td>
</tr>
<tr>
<td>3066W</td>
<td>15,17</td>
<td>54,20</td>
<td>1,48</td>
<td>61,93</td>
</tr>
<tr>
<td>A7597</td>
<td>12,88</td>
<td>55,89</td>
<td>1,43</td>
<td>61,91</td>
</tr>
<tr>
<td>D-848</td>
<td>14,57</td>
<td>60,19</td>
<td>1,35</td>
<td>57,82</td>
</tr>
<tr>
<td>A7575</td>
<td>13,72</td>
<td>58,49</td>
<td>1,40</td>
<td>60,84</td>
</tr>
<tr>
<td>SB303</td>
<td>14,72</td>
<td>61,23</td>
<td>1,36</td>
<td>58,74</td>
</tr>
<tr>
<td>3288W</td>
<td>16,26</td>
<td>56,89</td>
<td>1,42</td>
<td>62,00</td>
</tr>
<tr>
<td>C7990</td>
<td>17,90</td>
<td>46,07</td>
<td>1,61</td>
<td>68,06</td>
</tr>
<tr>
<td>DELFIN</td>
<td>11,55</td>
<td>63,28</td>
<td>1,30</td>
<td>56,58</td>
</tr>
<tr>
<td>C805</td>
<td>13,69</td>
<td>59,55</td>
<td>1,40</td>
<td>58,44</td>
</tr>
<tr>
<td>A7576</td>
<td>17,31</td>
<td>50,83</td>
<td>1,52</td>
<td>66,07</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variedad</th>
<th>Forraje seco ton/ha</th>
<th>FDN %</th>
<th>ENL Mcal/kg</th>
<th>Digestibilidad in vitro, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>8133</td>
<td>12,23</td>
<td>57,40</td>
<td>1,46</td>
<td>57,63</td>
</tr>
<tr>
<td>SILO MIEL</td>
<td>18,36</td>
<td>55,15</td>
<td>1,47</td>
<td>56,33</td>
</tr>
<tr>
<td>CB-111</td>
<td>12,11</td>
<td>57,35</td>
<td>1,46</td>
<td>58,96</td>
</tr>
<tr>
<td>DIAMANTE</td>
<td>8,49</td>
<td>41,80</td>
<td>1,48</td>
<td>58,57</td>
</tr>
<tr>
<td>SILO MILO</td>
<td>14,98</td>
<td>45,40</td>
<td>1,44</td>
<td>54,73</td>
</tr>
<tr>
<td>MARFIL</td>
<td>9,39</td>
<td>41,37</td>
<td>1,48</td>
<td>60,86</td>
</tr>
<tr>
<td>NK-367</td>
<td>19,51</td>
<td>45,37</td>
<td>1,45</td>
<td>54,39</td>
</tr>
<tr>
<td>TESTIGO</td>
<td>20,08</td>
<td>52,88</td>
<td>1,48</td>
<td>58,79</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Híbrido</th>
<th>Forraje verde ton/Ha</th>
<th>Forraje seco ton/Ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Big Laker</td>
<td>70.22</td>
<td>21.77</td>
</tr>
<tr>
<td>Ranchero</td>
<td>60.00</td>
<td>20.28</td>
</tr>
<tr>
<td>Exp.9644</td>
<td>58.52</td>
<td>18.62</td>
</tr>
<tr>
<td>Ciclón</td>
<td>46.96</td>
<td>17.08</td>
</tr>
<tr>
<td>N7989</td>
<td>64.44</td>
<td>16.36</td>
</tr>
<tr>
<td>Exp.9813</td>
<td>77.19</td>
<td>16.08</td>
</tr>
<tr>
<td>3025</td>
<td>52.44</td>
<td>16.01</td>
</tr>
<tr>
<td>A7575</td>
<td>55.41</td>
<td>15.93</td>
</tr>
<tr>
<td>3069</td>
<td>59.85</td>
<td>15.62</td>
</tr>
<tr>
<td>Advantage</td>
<td>65.93</td>
<td>14.91</td>
</tr>
<tr>
<td>3028</td>
<td>55.70</td>
<td>14.74</td>
</tr>
<tr>
<td>A7597</td>
<td>62.37</td>
<td>14.45</td>
</tr>
<tr>
<td>CB347</td>
<td>61.33</td>
<td>13.82</td>
</tr>
<tr>
<td>C7990</td>
<td>56.29</td>
<td>13.80</td>
</tr>
<tr>
<td>Tornado</td>
<td>58.81</td>
<td>13.65</td>
</tr>
<tr>
<td>Exp.9812</td>
<td>60.89</td>
<td>13.57</td>
</tr>
<tr>
<td>3230</td>
<td>63.56</td>
<td>13.35</td>
</tr>
<tr>
<td>ICl8285</td>
<td>53.48</td>
<td>13.11</td>
</tr>
<tr>
<td>A7573</td>
<td>67.55</td>
<td>13.04</td>
</tr>
<tr>
<td>Trueno</td>
<td>51.41</td>
<td>12.98</td>
</tr>
<tr>
<td>Genex710</td>
<td>50.96</td>
<td>12.84</td>
</tr>
<tr>
<td>Rendidor</td>
<td>65.33</td>
<td>12.58</td>
</tr>
<tr>
<td>C908</td>
<td>48.89</td>
<td>12.45</td>
</tr>
<tr>
<td>C922</td>
<td>53.78</td>
<td>12.01</td>
</tr>
<tr>
<td>ABT632</td>
<td>55.41</td>
<td>11.64</td>
</tr>
<tr>
<td>N7580</td>
<td>45.93</td>
<td>11.56</td>
</tr>
<tr>
<td>D685</td>
<td>50.37</td>
<td>11.24</td>
</tr>
<tr>
<td>D867</td>
<td>50.96</td>
<td>11.04</td>
</tr>
<tr>
<td>SB-302</td>
<td>44.00</td>
<td>11.00</td>
</tr>
<tr>
<td>Huracán</td>
<td>46.81</td>
<td>10.35</td>
</tr>
<tr>
<td>C398</td>
<td>41.63</td>
<td>9.23</td>
</tr>
<tr>
<td>N7590</td>
<td>55.41</td>
<td>15.57</td>
</tr>
<tr>
<td>Relámpago</td>
<td>45.93</td>
<td>15.31</td>
</tr>
<tr>
<td>ICl8315</td>
<td>53.48</td>
<td>13.95</td>
</tr>
<tr>
<td>N6330</td>
<td>48.89</td>
<td>12.61</td>
</tr>
<tr>
<td>Stauffer</td>
<td>55.11</td>
<td>12.44</td>
</tr>
<tr>
<td>ABT21</td>
<td>46.22</td>
<td>11.12</td>
</tr>
<tr>
<td>Híbrido</td>
<td>Forraje verde, ton/ha</td>
<td>Forraje seco, ton/ha</td>
</tr>
<tr>
<td>------------</td>
<td>-----------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>N6800</td>
<td>39.55</td>
<td>10.71</td>
</tr>
<tr>
<td>ABT6000y</td>
<td>33.63</td>
<td>8.83</td>
</tr>
<tr>
<td>Producers</td>
<td>28.15</td>
<td>7.80</td>
</tr>
<tr>
<td>3167</td>
<td>35.56</td>
<td>7.06</td>
</tr>
<tr>
<td>ICI8325</td>
<td>29.78</td>
<td>7.00</td>
</tr>
<tr>
<td>C805</td>
<td>31.41</td>
<td>6.59</td>
</tr>
<tr>
<td>ABT7000y</td>
<td>29185</td>
<td>6.57</td>
</tr>
<tr>
<td>ICI8314</td>
<td>27.26</td>
<td>5.53</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variedad</th>
<th>Forraje verde</th>
<th>Forraje seco</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ton/Ha</td>
<td>ton/Ha</td>
</tr>
<tr>
<td>Silo Miel</td>
<td>78.67</td>
<td>17.73</td>
</tr>
<tr>
<td>947</td>
<td>53.19</td>
<td>15.28</td>
</tr>
<tr>
<td>All forage</td>
<td>77.04</td>
<td>14.79</td>
</tr>
<tr>
<td>HoneyGraze</td>
<td>49.04</td>
<td>14.76</td>
</tr>
<tr>
<td>Happy cow</td>
<td>80.15</td>
<td>13.79</td>
</tr>
<tr>
<td>Silo sugar</td>
<td>77.48</td>
<td>13.61</td>
</tr>
<tr>
<td>Cowvittles</td>
<td>73.78</td>
<td>13.50</td>
</tr>
<tr>
<td>SweetStar</td>
<td>49.57</td>
<td>13.44</td>
</tr>
<tr>
<td>8133</td>
<td>51.11</td>
<td>15.77</td>
</tr>
<tr>
<td>ICI 5503</td>
<td>41.48</td>
<td>15.08</td>
</tr>
<tr>
<td>CB111</td>
<td>60.44</td>
<td>14.91</td>
</tr>
<tr>
<td>ICI5536</td>
<td>40.29</td>
<td>14.65</td>
</tr>
<tr>
<td>8118</td>
<td>65.19</td>
<td>14.53</td>
</tr>
<tr>
<td>Kingold 880</td>
<td>44.44</td>
<td>14.30</td>
</tr>
<tr>
<td>ICI 5429</td>
<td>42.52</td>
<td>14.17</td>
</tr>
<tr>
<td>Fame</td>
<td>49.63</td>
<td>13.24</td>
</tr>
<tr>
<td>Kingold 860</td>
<td>36.15</td>
<td>12.05</td>
</tr>
<tr>
<td>XM438</td>
<td>41.33</td>
<td>11.73</td>
</tr>
<tr>
<td>X58W</td>
<td>45.48</td>
<td>11.18</td>
</tr>
<tr>
<td>8232</td>
<td>46.96</td>
<td>11.08</td>
</tr>
<tr>
<td>SR101</td>
<td>29.19</td>
<td>10.61</td>
</tr>
<tr>
<td>XM217</td>
<td>37.63</td>
<td>10.44</td>
</tr>
<tr>
<td>Kingold 850</td>
<td>29.33</td>
<td>8.92</td>
</tr>
<tr>
<td>8428</td>
<td>42.67</td>
<td>8.84</td>
</tr>
<tr>
<td>Kingold 870</td>
<td>32.44</td>
<td>8.65</td>
</tr>
<tr>
<td>Domor</td>
<td>44.15</td>
<td>13.96</td>
</tr>
<tr>
<td>Boss</td>
<td>42.07</td>
<td>11.47</td>
</tr>
<tr>
<td>KIKAPU</td>
<td>27.56</td>
<td>6.89</td>
</tr>
</tbody>
</table>
LA IMPORTANCIA DE LOS MAÍCES Y SORGOS MEJORADOS PARA LA PRODUCCIÓN DE ENSILAJE

Rolando Herrera y Saldaña

En los sistemas intensivos de producción de leche, los forrajes participan, en la alimentación del ganado de ordeña con un 40 a 60 % del alimento total; así mismo, los forrajes también representan, generalmente, los ingredientes de menor costo en la alimentación.

Por lo anterior la mayoría de los productores lecheros ponen un gran énfasis en la utilización de los forrajes. Sin embargo, en muchos casos se sigue descuidando el aspecto de la calidad de los forrajes y debido a esto las producciones que se obtienen son menores que las esperadas.

Aún cuando por muchos años se han puesto de manifiesto las ventajas de utilizar forrajes de mayor calidad, el dilema que enfrentan muchos productores es de sacrificar cantidad por calidad. Las necesidades de volumen de forraje para alimentar al ganado muchas veces causa que los ganaderos decidan sembrar variedades o híbridos del tipo “forrajero”, que por lo general, producen mayor volumen, pero con menor calidad. Cabe mencionar que con una adecuada planeación y organización entre las necesidades del establo y las posibilidades del campo, es posible producir el forraje de calidad que necesitan las vacas altas productoras y por otra parte el forraje voluminoso de menor calidad para el ganado bajo en producción, seco y animales de reemplazo. A continuación se presentarán algunos resultados que demuestran como la calidad de los forrajes pueden hacer la diferencia en términos de productividad de los animales y mejorar la economía de los establos.
Alta contra baja calidad de los forrajes. ¿Qué significa eso?

Muchas veces asumimos que el término calidad se refiere solo a la concentración de ciertos nutrientes como, proteína cruda y fibra en un forraje, ó bien a la proporción de grano en la planta. Aún cuando esto es importante, los valores que nos dan más información acerca del verdadero valor nutritivo de un forraje y por tanto su calidad son su digestibilidad y el efecto que provoca en el animal que lo consume, lo cual se mide en la producción de leche ó en crecimiento (ganancia de peso y altura). Existen otros parámetros que nos indican valores asociados a la calidad de los forrajes y estos están relacionados con el porcentaje de paredes celulares y el contenido celular de las plantas. A estos se les conoce también como los contenidos de FIBRA DETERGENTE NEUTRO (FDN) y FIBRA DETERGENTE ACIDO (FDA).

![Diagrama de FIBRA DETERGENTE](image)

Figura 1. Componentes celulares de los forrajes

Estos parámetros están asociados con el consumo voluntario de los forrajes por los rumiantes y con la digestibilidad de las plantas, y por consiguiente con la producción de animales. En el caso de la FDN, la relación es de tipo inverso, es decir, a mayor contenido o porcentaje de FDN, menor el consumo de materia seca. En el caso de la FDA, esta está relacionada de manera inversa con la digestibilidad de la materia seca de los forrajes; es decir, a mayor contenido de FDA, menor digestibilidad (Figura 1).
Por estas razones se han realizado muchos esfuerzos para identificar variedades o híbridos de maíz y sorgo para forraje, con menores contenidos de FDN y de FDA, y de esta forma aspirar a mejores resultados con los animales que los consuman. Los trabajos desarrollados por los investigadores del Campo Experimental de la Laguna del INIFAP, en conjunto con el PIAL y el Grupo LALA, han resultado en la selección de materiales con porcentajes de FDN y de FDA menores a los porcentajes de los híbridos y variedades tradicionales. En esta forma, ha sido posible aumentar en la ración, la cantidad de los ensilajes hechos con estos materiales, para alimentar a las vacas lecheras en algunos establos de la Laguna. De igual manera, ha sido posible reducir el costo de la alimentación en dichos establos.

En resumen, podemos decir en forma general, que los conceptos más importantes que determinan la calidad de un forraje son los siguientes:

Cuadro 1. Características para determinar la calidad nutricional de un forraje.

<table>
<thead>
<tr>
<th>Concepto</th>
<th>Baja calidad</th>
<th>Alta calidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contenido de FDN</td>
<td>Más de 60%</td>
<td>De 40 a 52 %</td>
</tr>
<tr>
<td>Contenido de FDA</td>
<td>Más de 35 %</td>
<td>De 25 a 32 %</td>
</tr>
<tr>
<td>Contenido de ENI</td>
<td>Menos de 1.4 Mcal/kg de MS</td>
<td>Más de 1.45 Mcal/kg de MS</td>
</tr>
<tr>
<td>Digestibilidad de la MS</td>
<td>Menos de 60 %</td>
<td>Más de 65 %</td>
</tr>
</tbody>
</table>

Importancia de los resultados de investigación

A partir de 1995, a iniciativa del Patronato de Investigación Agropecuaria de la Laguna (PIAL), del Campo Agrícola Experimental de la Laguna, INIFAP y de la Gerencia de Asistencia Técnica del Grupo LALA, se empezaron a evaluar en predios de los productores los distintos híbridos de maíz y variedades de sorgo que comúnmente se sembraban en la región para la producción de forraje. Desde un inicio el FIRA Banco de México ha apoyado este tipo de eventos con recursos económicos y
con apoyo estratégico para el buen desarrollo de las demostraciones. Hasta la fecha se han evaluado más de 72 híbridos de maíz y aproximadamente 36 variedades de sorgo. De estos materiales, varios se han destacado por su rendimiento de materia seca digestible y características superiores en cuanto a rendimiento de nutrientes por unidad de superficie.

Dentro de los aspectos más sobresalientes de las evaluaciones tenemos los siguientes:

1. Se identificaron materiales con una mayor proporción de grano con respecto a la producción total. Esto incrementó la concentración de energía neta de lactancia (EN$_l$) por unidad de peso.
2. Se seleccionaron materiales con la característica de marchitez retardada (factor "stay green").
3. Se ajustaron los antiguos criterios de evaluación, para incluir ahora los parámetros de; concentración de EN$_l$/kg de MS, porcentaje de FDN y de FDA y rendimiento de materia seca digestible por hectárea.
4. Se ha logrado transmitir la información a un gran número de productores de la región y de otras en el norte del país. Provocando con lo anterior, un cambio en la cultura de los productores al seleccionar materiales con mayor calidad para la producción de forrajes.
5. Se han logrado en algunos establecimientos los objetivos de incrementar la cantidad de ensilaje de maíz, con materiales de alta calidad, hasta 26 kilogramos por vaca/día y reducir el costo de la alimentación en aproximadamente $1.00/vaca/día, manteniendo producciones de leche superiores a los 40 litros/vaca/día.

A continuación se presentan los resultados de un estudio realizado por el Dr. William Seglar en el cual se compararon diferentes ensilajes de maíz, provenientes de híbridos con diferente calidad. En este estudio se evaluaron dichos materiales en cuanto su
contenido de nutrientes, su calidad y se estimó su efecto en la producción de leche. Dicha información se presenta en el Cuadro 2.

Cuadro 2. Calidad de distintos híbridos de maíz ensilados y su efecto en la producción de leche.

<table>
<thead>
<tr>
<th>Híbrido</th>
<th>Materia seca, ton/ha</th>
<th>EN, Mcal/kg de MS</th>
<th>Rendimiento EN, Mcal/ha</th>
<th>NDT, %</th>
<th>Rendimiento NDT/ha</th>
<th>FAD, %</th>
<th>Prod. de leche, kg/ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>24.21</td>
<td>1.45</td>
<td>35,104</td>
<td>66.51</td>
<td>16,102</td>
<td>30.88</td>
<td>227,560</td>
</tr>
<tr>
<td>B</td>
<td>19.52</td>
<td>1.61</td>
<td>31,427</td>
<td>70.11</td>
<td>13,685</td>
<td>25.40</td>
<td>203,722</td>
</tr>
<tr>
<td>C</td>
<td>26.19</td>
<td>1.34</td>
<td>35,094</td>
<td>64.65</td>
<td>16,932</td>
<td>34.61</td>
<td>227,556</td>
</tr>
<tr>
<td>D</td>
<td>22.58</td>
<td>1.50</td>
<td>33,870</td>
<td>67.32</td>
<td>15,201</td>
<td>26.99</td>
<td>219,557</td>
</tr>
</tbody>
</table>

Como puede apreciarse, las mayores producciones estimadas de leche fueron obtenidas con los híbridos A y C, los cuales tuvieron una mayor producción de materia seca (MS), aún cuando las concentraciones de EN y los porcentajes de NDT fueron inferiores a los híbridos B y D. Cabe mencionar que aunque se trata de valores no reales, sino estimados, nos da una pauta y llamada de atención para poner atención en el valor del rendimiento/ha de NDT que aportaron los híbridos A y C. Esta materia digestible es lo que procesarían las vacas para producir leche.

Finalmente, se presentan resultados de la aplicación de dos tipos de ensilajes en un establo, el primero de tipo tradicional y el segundo del tipo de alta calidad. Lo sobresaliente de esta comparación fue el hecho de que fue posible incluir en la ración una mayor cantidad de ensilaje de calidad, lo cual permitió reducir significativamente el costo de la ración y además se logró un incremento en la producción de leche (Cuadro 3). Todos los ingredientes que recibieron las vacas fueron los mismos y consistieron en:
Cuadro 3. Análisis comparativo del costo y la producción de leche con raciones utilizando ensilados de maíz tradicional y de calidad superior en la alimentación de vacas lecheras.

<table>
<thead>
<tr>
<th>INGREDIENTES</th>
<th>Cantidad/vaca/día (Kg.)</th>
<th>MAIZ TRADICIONAL</th>
<th>MAIZ SUPERIOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heno de Alfalfa</td>
<td>5.0</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>Ensilaje Tipo Tradicional (1.20)*</td>
<td>17.00</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Ensilaje Tipo Superior (1.45)*</td>
<td>-</td>
<td>20.00</td>
<td></td>
</tr>
<tr>
<td>Semilla de Algodón</td>
<td>3.0</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>Maíz Rolado</td>
<td>6.5</td>
<td>5.5</td>
<td></td>
</tr>
<tr>
<td>Pasta de Canola</td>
<td>1.5</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>Pasta de Soya</td>
<td>0.5</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>Gluten de Maíz</td>
<td>0.4</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>Harina de Sangre</td>
<td>0.25</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>Harina de Pescado</td>
<td>0.10</td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td>Harina de Carne</td>
<td>0.20</td>
<td>0.20</td>
<td></td>
</tr>
<tr>
<td>Melaza</td>
<td>0.50</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>Megalac</td>
<td>0.40</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Px Minerales</td>
<td>0.40</td>
<td>0.40</td>
<td></td>
</tr>
<tr>
<td>Px Vitaminas</td>
<td>0.02</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>35.77 Kg.</td>
<td>37.37 Kg.</td>
</tr>
<tr>
<td>Costo, $/d</td>
<td></td>
<td>40.95</td>
<td>38.13</td>
</tr>
<tr>
<td>Producción de Leche, Its/día/vaca</td>
<td></td>
<td>28.6</td>
<td>31.7</td>
</tr>
</tbody>
</table>

Es nuestro deseo que esta información sea de utilidad para que Usted pueda decidir sobre que híbrido o variedad le conviene sembrar para alimentar sus vacas y obtener los máximos beneficios con el material seleccionado.
Gerencia de Asistencia Técnica

Para dudas o mayor información sobre los temas aquí presentados, comunicarse con los autores a:

Campo Experimental La Laguna
Km. 17 carretera Torreón-Matamoros
Apo. Postal 247 en Torreón, Coah.
Tel. s (01-176) 2-02-02 al-05
2 07-16
Fax (01-176) 2-07-15
Correo electrónico; celala@halcon.laguna.ual.mx
forraje@halcon.laguna.ual.mx

Gerencia de Asistencia Técnica
Grupo LALA
Tel. (01-17) 50-23-12
Fax (01-17) 50-23-13