USO DE SISTEMAS DE INFORMACIÓN GEOGRÁFICA PARA EL ANÁLISIS DE ÁREAS AFECTADAS POR INCENDIOS FORESTALES EN CHIHUAHUA, MÉXICO

Héctor Eligio ALANÍS MORALES
Carmelo PINEDO ÁLVAREZ
Dámaris Sarai MARTÍNEZ CÁZAREZ
Daniel NÚÑEZ LÓPEZ
Héctor Osbaldo RUBIO ARIAS
Melitón TENA VEGA
Martín MARTÍNEZ SALVADOR
Manuel IRIGOYEN SOTO
Saúl ALVÍDREZ VITOLÁS

CENTRO DE INVESTIGACIÓN REGIONAL NORTE-CENTRO
SITIO EXPERIMENTAL LA CAMPANA-MADERA
Folleto Científico Núm. 10 1 de diciembre de 2009
DIRECTORIO INSTITUCIONAL

SECRETARÍA DE AGRICULTURA, GANADERÍA, DESARROLLO RURAL, PESCA Y ALIMENTACIÓN

Lic. Francisco Javier Mayorga Castañeda
Secretario

M Sc. Mariano Ruiz-Funes Macedo
Subsecretario de Agricultura

Ing. Ignacio Rivera Rodríguez
Subsecretario de Desarrollo Rural

Dr. Pedro Adalberto González
Subsecretario de Fomento a los Agronegocios

INSTITUTO NACIONAL DE INVESTIGACIONES FORESTALES, AGRÍCOLAS Y PECUARIAS

Dr. Pedro Brajcich Gallegos
Director General

Dr. Enrique Astengo López
Coordinador de Planeación y Desarrollo

Dr. Salvador Fernández Rivera
Coordinador de Investigación, Innovación y Vinculación

Lic. Marcial A. García Morteo
Coordinador de Administración y Sistemas

CENTRO DE INVESTIGACIÓN REGIONAL NORTE CENTRO

Dr. Homero Salinas González
Director Regional

Dr. Héctor Mario Quiroga Garza
Director de Investigación

Dr. José Verástegui Chávez
Director de Planeación

Lic. Jaime Hernández-Pimentel
Director de Administración

SITIO EXPERIMENTAL LA CAMPANA-MADERA

MC. Manuel Gustavo Chávez Ruiz
Director de Coordinación y Vinculación en Chihuahua
USO DE SISTEMAS DE INFORMACIÓN GEOGRÁFICA PARA EL ANÁLISIS DE ÁREAS AFECTADAS POR INCENDIOS FORESTALES EN CHIHUAHUA, MÉXICO

Héctor Eligio ALANÍS MORALES¹
Carmelo PINEDO ÁLVAREZ²
Dámaris Sarai MARTÍNEZ CÁZAREZ³
Daniel NÚÑEZ LÓPEZ⁴
Héctor Osbaldo RUBIO ARIAS²
Melitón TENA VEGA¹
Martín MARTÍNEZ SALVADOR¹
Manuel IRIGOYEN SOTO⁵
Saúl ALVÍDREZ VITOLÁS¹

¹ INIFAP-Sitio Experimental La Campana-Madera.
² Universidad Autónoma de Chihuahua-Facultad de Zootecnia.
³ Comisión Nacional Forestal.
⁴ INECOL-Centro de Estudios sobre la Sequía.
⁵ SEMARNAT-Delegación Chihuahua.

INSTITUTO NACIONAL DE INVESTIGACIONES FORESTALES AGRÍCOLAS Y PECUARIAS
CENTRO DE INVESTIGACIÓN REGIONAL NORTE-CENTRO
SITIO EXPERIMENTAL LA CAMPANA-MADERA
1 DE DICIEMBRE DE 2009

Folleto Científico Núm. 10 1 de diciembre de 2009
USO DE SISTEMAS DE INFORMACIÓN GEOGRÁFICA PARA EL
ANÁLISIS DE ÁREAS AFECTADAS POR INCENDIOS
FORESTALES EN CHIHUAHUA, MÉXICO

Sitio Experimental La Campana-Madera

Primera Edición 2009.
Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias.
Progreso Núm. 5
Barrio de Santa Catarina
Delegación Coyoacán
04010 México, D. F.

Centro de Investigación Regional Norte Centro. CIRNOC
Sitio Experimental La Campana-Madera
Ave. Homero 3744.
31100 Chihuahua, Chih. México

Impreso en México- Printed in Mexico

No está permitida la reproducción total o parcial de esta
publicación, ni la transmisión de ninguna forma o por cualquier
medio, ya sea electrónico, mecánico, fotocopia, por registro u
otros métodos sin el permiso previo y por escrito de la
Institución.
<table>
<thead>
<tr>
<th>CONTENIDO</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>RESUMEN</td>
<td>1</td>
</tr>
<tr>
<td>SUMMARY</td>
<td>2</td>
</tr>
<tr>
<td>INTRODUCCIÓN</td>
<td>3</td>
</tr>
<tr>
<td>OBJETIVOS</td>
<td>4</td>
</tr>
<tr>
<td>REVISIÓN DE LITERATURA</td>
<td>4</td>
</tr>
<tr>
<td>Distribución de los bosques en Chihuahua</td>
<td>4</td>
</tr>
<tr>
<td>El fuego en los ecosistemas forestales</td>
<td>5</td>
</tr>
<tr>
<td>Sensores remotos en el análisis de incendios</td>
<td>6</td>
</tr>
<tr>
<td>Análisis del terreno</td>
<td>9</td>
</tr>
<tr>
<td>MATERIALES Y MÉTODOS</td>
<td>11</td>
</tr>
<tr>
<td>Análisis de estadísticas de incendios forestales</td>
<td>11</td>
</tr>
<tr>
<td>Evaluación de cargas de combustibles forestales</td>
<td>11</td>
</tr>
<tr>
<td>Detección de áreas incendiadas</td>
<td>12</td>
</tr>
<tr>
<td>Características espectrales de la vegetación</td>
<td>13</td>
</tr>
<tr>
<td>Fuentes de datos y herramientas de procesamiento para las áreas incendiadas</td>
<td>13</td>
</tr>
<tr>
<td>Soporte lógico y físico</td>
<td>14</td>
</tr>
<tr>
<td>Análisis y procesamiento de imágenes Landsat-TM.</td>
<td>14</td>
</tr>
<tr>
<td>Procesamiento y análisis digital del Modelo Digital de Elevación (MDE)</td>
<td>15</td>
</tr>
<tr>
<td>Análisis de la Información</td>
<td>15</td>
</tr>
<tr>
<td>Características espectrales de la vegetación</td>
<td>15</td>
</tr>
<tr>
<td>Detección de áreas incendiadas</td>
<td>16</td>
</tr>
<tr>
<td>Análisis pre y postincendio</td>
<td>16</td>
</tr>
<tr>
<td>Análisis topográfico</td>
<td>16</td>
</tr>
<tr>
<td>Evaluación de los mapas</td>
<td>17</td>
</tr>
<tr>
<td>RESULTADOS Y DISCUSIÓN</td>
<td>17</td>
</tr>
<tr>
<td>Análisis de estadísticas de incendios forestales</td>
<td>17</td>
</tr>
<tr>
<td>Tema</td>
<td>Página</td>
</tr>
<tr>
<td>---</td>
<td>--------</td>
</tr>
<tr>
<td>Evaluación de cargas de combustibles forestales</td>
<td>18</td>
</tr>
<tr>
<td>Características spectrales de la vegetación</td>
<td>20</td>
</tr>
<tr>
<td>Detección de áreas incendiadas</td>
<td>23</td>
</tr>
<tr>
<td>Análisis pre y postincendio</td>
<td>28</td>
</tr>
<tr>
<td>Análisis de datos espectrales–datos topográficos</td>
<td>30</td>
</tr>
<tr>
<td>CONCLUSIONES Y RECOMENDACIONES</td>
<td>34</td>
</tr>
<tr>
<td>LITERATURA CITADA</td>
<td>36</td>
</tr>
<tr>
<td>AGRADECIMIENTOS</td>
<td>43</td>
</tr>
</tbody>
</table>
RESUMEN

Se analizaron las estadísticas de los incendios forestales en el período 1995-2000, a nivel estatal y municipal. Se realizó un inventario de combustibles finos (hojarasca y ramillas muy finas) así como de combustibles leñosos (ramas y troncos) en áreas sujetas a aprovechamientos forestales. Los combustibles finos se muestrearon con un cuadrante de 0.305 m x 0.305 m con un tamaño de muestra de n = 11 seleccionados al azar. La carga de combustibles leñosos se determinó de acuerdo a la técnica de intersecciones planares sobre líneas de muestreo de 20 m de longitud. Para la detección de áreas incendiadas se utilizaron imágenes satelitales de Landsat 5 TM y AVHRR y los programas AutoCad 2000, IDRISI 3.2 y ARC VIEW V. 3.2. La detección de áreas incendiadas se realizó mediante combinaciones convencionales de tres bandas; banda 3 en el canal azul, banda 4 en el canal verde y banda 5 en el canal rojo y combinaciones 2, 3 y 4 en los canales respectivos. Además se efectuó una exploración de combinaciones de tres bandas, utilizando todas las bandas de Landsat TM, con excepción de la banda 6, la cual es clasificada como térmica. El estado de Chihuahua con un promedio anual de 580 incendios ocupó el cuarto lugar en el país después del estado de México, el Distrito Federal y Michoacán. Respecto a la superficie afectada se encontró en segundo lugar con un promedio de 17,000 ha. Los municipios con mayores cargas de combustibles fueron Madera con 68.9 ton/ha, Guadalupe y Calvo con 66.5 ton/ha y Baborigame con 59.8 ton/ha.
SUMMARY

In the period of 1995-2000, the forest fires statistics were analyzed at state and municipal level. An inventory of fine (withered leaves and very fine twigs) and woody (branches and trunks) fuels was carried out in forest areas subject to be cut. The fine fuels were sampled with a quadrant of 0.305 m x 0.305 m, with a sample size of, n=11, selected at random. The burden of woody fuels was determined according to the plane intersections (intersecciones planares) technique on sample lines of 20 m length. For the detection of burned areas, Landsat TM and AVHRR satellite images and the AutoCad 2000, IDRISI 3.2 y ARC VIEW V. 3. 2 programs were used. The detection of burned areas was made by conventional combination of three bands: band 3 in blue channel, band 4 in channel green and band 5 in channel red and combinations 2, 3 and 4 in the respective channels. Moreover, an exploration on combination of three bands of Landsat TM was undertaken, except band 6, which is classified as thermal. With an annual average of 580 forest fires, Chihuahua state was set in fourth place of the country, after Mexico state, Federal District and Michoacan state. Regarding the affected area, Chihuahua state was ranked second with an average of 17,000 ha. The municipalities with grater burden of fuels were Madera with 68.9 ton/ha, Guadalupe y Calvo with 66.5 ton/ha and Baborigame with 59.8 ton/ha.
INTRODUCCIÓN

Los incendios forestales son considerados como uno de los factores más importantes en la destrucción de los bosques, ya que ocasionan graves daños a la vegetación, al suelo, a la fauna silvestre y en general a las cuencas hidrológicas, sobre todo si éstos son recorrentes. Sin embargo, el factor fuego es un componente natural del ambiente, y forma parte del equilibrio de los ecosistemas. Cualquiera que sea su origen natural o inducido, su importancia en el manejo forestal y de pastizales radica en que es uno de los factores más importantes en la modificación de estos ecosistemas. La SEMARNAP (1999) reporta que el ser humano provoca estos siniestros cuando realiza actividades tradicionales como quema de pastos y esquilmos agrícolas, fogatas mal apagadas de visitantes y quemaduras intencionales. En la última década el estado de Chihuahua ha sufrido un prolongado período de sequía, que aunado a la superficie tan extensa de bosques y al material orgánico combustible acumulado, ha ocasionado serios problemas de incendios forestales, ocupando un lugar importante en cuanto número de incendios y superficie afectada. En 1999 se rebasaron las cifras de todos los tiempos con 1,476 incendios que afectaron 49,375 ha (SEMARNAP, 1999). Estos siniestros cuando se presentan sin control, son un grave problema para los manejadores de los bosques, quienes tienen que enfrentarlo año con año, mediante el combate y recuperación de áreas afectadas, gastando millones de pesos.

El cálculo de cargas de combustibles son importantes para pronosticar áreas susceptibles de quemarse y la magnitud del incendio.

La evaluación de la severidad del incendio, el tamaño del área siniestrada, el tipo de vegetación afectada y las características físicas del terreno, son algunos de los indicadores más importantes para iniciar el análisis de
factores que permitan restaurar las áreas siniestradas. Los datos de satélites de alta resolución espectral tales como las plataformas Landsat TM, SPOT, y más recientemente Ikonos, ofrecen nuevas posibilidades de monitoreo y evaluación de los incendios forestales. Adicionalmente, los Modelos Digitales de Elevación proporcionan una perspectiva única para que con datos biogeomorfológicos se obtenga información que discrimine las clases de cubierta en ambientes de alto relieve como las presentadas por la orografía de la Sierra Madre Occidental de Chihuahua, México. La localización de las zonas incendiadas es importante para estimar más acertadamente las superficies afectadas y para restaurar oportunamente las áreas más dañadas.

OBJETIVOS

- Evaluar las cargas de combustibles en áreas con aprovechamientos forestales en diferentes municipios para conocer áreas susceptibles de incendiarse.
- Localizar y estimar superficies afectadas por incendios forestales.

REVISIÓN DE LITERATURA

Distribución de los bosques en Chihuahua

De acuerdo con los datos reportados por el Inventario Nacional Forestal de SAGAR (1994), el área con aprovechamiento forestal en el estado de Chihuahua se encuentra inmersa en provincias de la Sierra Madre Occidental y Sierras y Llanuras del Norte. A éstas corresponden total o parcialmente las siguientes Subprovincias: Sierras y Cañadas del Norte, Sierras y Llanuras Tarahumaras, Gran Meseta y Cañones
Chihuahuenses, Gran Meseta y Cañones Duranguenses, así como Llanuras y Médanos del Norte (Valencia, 1995). Los bosques de coníferas en el estado de Chihuahua, se distribuyen en poco más de 7 millones de hectáreas (SAGAR, 1994).

El fuego en los ecosistemas forestales
El fuego ha influido siempre en la estructura de las comunidades vegetales. La adaptación de las plantas al factor fuego se debe a diferentes causas como escape en espacio, escape en tiempo, prevención y recuperación del daño causado por el fuego, recolonizando áreas incendiadas y relacionándose con el régimen del fuego (Rodríguez, 1996). Los rayos o tormentas eléctricas han sido históricamente las fuentes principales de ignición, donde hoy en día el ser humano es el factor más importante (Hawkes, 1980). A pesar de que los incendios forestales resultan de un proceso natural, en la mayoría de los ecosistemas terrestres, la acción del hombre ya sea directa o indirectamente tiende a afectar los sitios de recurrencia, lo que implica una incidencia no natural del fuego sobre el territorio (Martínez, 2000).

Según datos de SEMARNAP (1999) el 97% de los incendios forestales que se presentan en los bosques de Chihuahua tienen su origen en el factor humano debido a actividades tradicionales como son quema de pastos y esquilmos, fogatas de visitantes, quemadas inducidas que buscan beneficiar a la actividad de aprovechamiento no controlados de la madera, así como el aprovechamiento del producto mediante la justificación de un estudio de contingencias. Sarre y Goldammer (1996) mencionaron que la mayoría de los incendios forestales se inician con fines específicos tales como el desmonte de la tierra y su preparación para la agricultura y el pastoreo de ganado así como para aumentar el rendimiento de algunos productos forestales.
Cedeño (1999) jerarquizó las causas principales de los incendios en México, resumiendo que el 98% se atribuyen a causas humanas, la mayoría derivada de actividades agropecuarias tales como quema de pastizales, desmontes con fines agrícolas y otros. Los incendios forestales en México como en otros países representan un serio problema y la gran mayoría de éstos ocurren durante el período marzo-junio.

En los últimos 40 años se tiene un promedio anual de aproximadamente 7,000 incendios registrados en el país. El mayor número de incendios en México fue en 1988, cuando se presentaron 10,942 siniestros (Rodríguez, 1996). En lo que respecta a la superficie total afectada, el promedio anual es de alrededor de 232,000 ha, con un máximo de 849,632 ha en 1998 y un mínimo de 44,401 en 1992 (SEMARNAP, 1999).

El indicador superficie afectada por incendio ha sido muy variable. La mínima fue de 13 ha en 1996 y la máxima de 371 ha en 1958, siendo el promedio nacional de 32 ha por incendio (Rodríguez, 1996).

Sensores remotos en el análisis de incendios.

Los nuevos avances científicos y tecnológicos apuntan directamente a catalizar el desarrollo de la ecología y manejo de los recursos naturales (Johnston, 1998). Los Sistemas de Información Geográfica (SIG) y la Percepción Remota constituyen este tipo de avances científicos y tecnológicos.

Los SIG son sistemas computarizados que consisten en un conjunto de herramientas diseñados para la captura, el almacenamiento y análisis de información acerca de atributos en donde la localización y relaciones espaciales juegan un papel primordial (Burrough, 1990). Como fuente principal del SIG, las imágenes de satélite ofrecen nuevas posibilidades de monitoreo de diversos atributos de los recursos naturales (Iverson et al., 1989).
Existen numerosas definiciones de sensores remotos en la literatura, pero Buiten (1993) los refiere como todas aquellas técnicas y artes de medición e interpretación de fenómenos sin estar en contacto directo con los mismos. Específicamente las imágenes de satélite reflejan la medición de la radiación electromagnética que ha sido emitida o reflejada a partir de la superficie terrestre (Campbell, 1987). Las imágenes de satélite tienen varias ventajas en relación con los métodos convencionales de observación. Con las imágenes de satélite es posible analizar grandes extensiones de terreno; el análisis en la misma área y su evaluación en diferentes longitudes de onda proporcionan información adicional en relación con la condición del estado de los recursos naturales (Kaufmann et al., 1990).

Los estudios de los datos de satélite relacionados con los incendios incluyen información antes del incendio (contenido de combustible y vegetación), detección de fuegos activos, plumas de humo y estudios de efecto del fuego que incluyen análisis de las áreas incendiadas y análisis de criterios de reclasificación para regeneración de la vegetación (Razafimpanilo et al., 1995).

Diversos países del mundo disponen de procedimientos y han iniciado la aplicación de esta tecnología geoespacial para el monitoreo y análisis de incendios. Estudios piloto sobre el manejo del fuego en Polonia han resaltado la importancia del uso de datos de satélites tales como Landsat-TM, SPOT, y ERS-SAR combinados con satélites de baja resolución como los NOAA-AVHRR, que ofrecen nuevas posibilidades para el monitoreo de incendios forestales (SD Dimensions, 1999).

El sensor AVHRR tiene la capacidad para detectar la presencia de fuegos activos utilizando el canal 3 (3.8 milimicrons) (Achard y Estreguil, 1995). Sin embargo, de acuerdo con Malingreau (1990) la baja resolución de los datos de imágenes AVHRR (1.1 km² por pixel), hace difícil cuantificar en forma precisa el tamaño de las áreas
quemadas y el tipo de vegetación afectada. El uso de datos de buena resolución espacial como los ofrecidos por ERS-2 SAR, Landsat-TM y SPOT ofrecen la oportunidad de evaluar más profundamente el efecto de los incendios forestales (Siegert y Hoffmann, 2000). El sensor ERS-2 SAR es utilizado en ambientes de alta nubosidad, humedad relativa o presencia de humo por su capacidad para penetrar estos factores facilitando la colecta de datos (Barbosa et al., 1999). De acuerdo con este investigador, bajo estas condiciones sería inadecuado utilizar imágenes Landsat TM y SPOT, debido a la frecuencia de nubes y humo en épocas de incendios activos. Los satélites de tipo pasivo como los mencionados no tienen capacidad para colectar información en estas condiciones (Curran, 1989). Por lo anterior, satélites de tipo radar como las imágenes ERS-2, se utilizan en Indonesia para analizar la extensión e impacto ecológico y económico de los incendios (Siegert y Rucker, 2000).

Barbosa et al., (1999) señala la importancia de utilizar satélites de alta resolución espacial en estudios que permitan estimar áreas afectadas por incendios a nivel de píxel. Un problema recurrente en la utilización de imágenes para identificar pequeñas superficies, son las limitaciones de la resolución espacial del sensor. Sin embargo, la Federal Geographic Data Committee (1992) reporta que una caja de nueve píxeles equivalente a una hectárea para los datos de TM, es suficiente para caracterizar un rasgo en la imagen de satélite. Este mismo organismo, menciona que con datos y chequeo de campo, la precisión es doblada y la unidad real mínima de mapeo se reduce al equivalente a media hectárea píxeles. (Razafimpanilolo et al., 1995). Esta herramienta ha tomado un inusitado interés como una fuente de datos potencial para analizar la magnitud y tamaño de áreas incendiadas permitiendo además, la evaluación de impactos económicos y ecológicos (Fang y Huang, 1998).
Sepúlveda et al., (2001) generaron un sistema de información geográfica dinámico, para la prevención de incendios forestales para los estados de Baja California, Baja California Sur y Sonora. El sistema genera información en una escala estatal-regional mediante mapas clasificados y datos tabulares sobre la probabilidad de ignición (%), velocidad de dispersión (pies/min) y un índice de consumo. Este último, determina la intensidad de incendio esperado, proporcionado indicadores para su control. Asimismo elaboraron mapas con los combustibles forestales existentes en los tres Estados, implementaron un subsistema de adquisición de datos y desarrollaron un módulo matemático programado en lenguaje Avenue, el cual fue integrado al software Arcview.

Razafimpanilo et al., (1995) señalaron que para los estudios conducidos en biomasa quemada, existe poca información en variables espaciotemporales sobre los incendios a una escala regional y global. Sin embargo, también señalaron que aplicando resultados en pequeñas áreas se pueden inferir a grandes superficies dando una idea del patrón global de las áreas incendiadas. Numerosos procedimientos se han desarrollado para detectar superficies incendiadas en bosques boreales apoyados en el uso de datos de satélite de baja y alta resolución espacial (Cahoon et al., 1994).

Análisis del terreno
Los Modelos Digitales Elevación (MDE), también conocidos como Modelos Digitales del Terreno (MDT) son utilizados para representar los datos de altitud dentro de un Sistema de Información Geográfica (SIG) y se generan a partir de un arreglo regular de los valores de elevación derivados de mapas topográficos, fotografías aéreas o de imágenes de satélites (Johnston, 1998). A partir de estos modelos, es posible construir Modelos Digitales de
Exposición y Pendiente como variables biofísicas derivadas directamente de la topografía (Muñoz, 2001). Lozano (1996) reporta que los MDE utilizados a través de modelos múltiples, demostraron un alto nivel de confiabilidad para la interpretación espacial cuando está estrechamente ligada a las características fisiográficas del terreno, especialmente al factor altitudinal. De acuerdo con Muñoz (2001) la pendiente define la relación existente entre los rasgos del terreno. La propagación y la dificultad para controlar un incendio varía de acuerdo a la exposición del terreno. En general, las pendientes con orientación al sur y suroeste proporcionan las condiciones favorables para la ignición, debido a que reciben la energía solar más directamente, de tal forma que la temperatura del aire y de los combustibles forestales es más alta (USDA, Forest Service, 1976). González (2001) utilizó Modelos Digitales de Elevación, para caracterizar ecológicamente áreas de protección de flora y fauna en el cañón de Santa Elena y Big Bend National Park, encontrando la utilidad de éstos al permitir detectar los cambios en composición botánica y cobertura aérea que sufre la vegetación al variar el factor altitudinal. Cook et al., (1989) e Iverson et al., (1989) utilizaron datos biogeográficos y datos espectrales para estimar la productividad de madera, encontrando una alta correlación de esta variable con exposición y pendiente, las cuales determinan asociaciones forestales de utilidad en altas escalas. Diversos investigadores (Franklin et al., 1994; Treitz y Howart., 2000) reportaron el efecto de sombra, debido al relieve en exposición norte, recomendando el uso de Modelos Digitales del Terreno (Banninger, 1986) o bien modelos de simulación de reflectancia óptica geométrica (Gemmell, 1995). La topografía (pendiente, exposición, altitud) puede crear confusión adicional dentro del análisis de clasificación (Beaubien, 1994). No obstante, el uso de MDE integrados a la imagen de satélite, permitió a
Franklin et al., (1994) mejorar el análisis de clasificación de vegetación, al incrementar de 66% de precisión con el uso de datos solos a 79% con los datos integrados. Treitz y Howarth (2000) en un estudio de clasificación forestal, observaron que la utilización de datos de terreno y espectrales como variables únicas, no proporcionaron suficiente información en relación con los datos combinados de imágenes y MDE, los cuales mejoraron sustancialmente la clasificación de las clases de vegetación.

MATERIALES Y MÉTODOS

Análisis de estadísticas de incendios forestales
Las estadísticas de los incendios forestales del estado de Chihuahua fueron analizan por municipios en el período 1995-2000, en cuanto a número de incendios, superficie afectada y por indicador (superficie por incendio). Esta información se comparó con las entidades federativas con mayor problemática de incendios forestales. Asimismo, se detectaron los municipios con mayor ocurrencia de incendios en el estado de Chihuahua.

Evaluación de cargas de combustibles forestales
En 1998 se realizó un inventario de combustibles en las áreas sujetas a aprovechamientos forestales en ocho municipios, en cuatro localidades de cada municipio, tanto para combustibles finos (hojarasca y ramillas muy finas) como para los combustibles leñosos (ramas y troncos). Los combustibles finos se muestrearon con un cuadrante de 0.305 m x 0.305 m en 11 puntos, completando 1 m², de acuerdo con la metodología de Sánchez y Zerecero (1983) (Figura 1). La carga de combustibles leñosos se determinó según la metodología de Brown (1974), basada en la técnica de intersecciones planares sobre líneas de muestreo de 20 m de longitud, hacia diferentes puntos (Figura 2).
Figura 1. Inventario de combustibles finos.

Figura 2. Inventario de combustibles leñosos.
Detección de áreas incendiadas
En la detección de áreas incendiadas se utilizaron las combinaciones convencionales de tres bandas (banda 3 en el canal azul, banda 4 en el canal verde y banda 5 en el canal rojo o combinaciones 2, 3 4 en los canales respectivos). También se realizó una exploración de combinaciones de tres bandas utilizando todas las bandas de Landsat 5 TM (a excepción de la banda 6, clasificada como térmica), para producir y seleccionar una composición en falso color que permitiera detectar en forma clara y precisa, las áreas afectadas por los incendios.

Características espectrales de la vegetación
Las bandas mono temporales permitieron producir una composición en falso color con capacidad para discriminar las áreas incendiadas, clases de vegetación y usos de suelo. El mapa final permitió generar seis clases, siendo éstos las de bosque comercial de condición regular, bosque comercial de condición irregular, bosque no comercial, áreas abiertas con suelo parcialmente cubierto, vegetación de transición y áreas afectadas por incendios forestales,

Fuentes de datos y herramientas de procesamiento para las áreas incendiadas
Se utilizó la base de datos de SEMARNAP (1999) de 10 puntos de calor identificados por el satélite AVHRR distribuidos en áreas diversas del municipio de Bocoyna. Para el análisis espectral de las áreas incendiadas se procesaron dos escenas, una imagen post-incendio, Landsat TM 5 de mayo de 1999 y la imagen antes de que se presentara el incendio de marzo del mismo año. Para el estudio de las variables biofísicas (altitud, exposición y pendiente) se utilizaron dos grados cuadrados de los Modelos Digitales de Elevación (MDE) en escala 1:250,000 adquiridos en el Instituto Nacional de
Estadística Geografía e Informática (INEGI) ubicados entre los 107° y 108 °C longitud oeste y 27° a 29 °C latitud norte.

Soporte lógico y físico
Para el procesamiento de los polígonos, imágenes de satélite y rutinas de Sistema de Información Geográfica, se utilizaron los programas AutoCAD 2000, IDRISI32 y ARCVIEW V. 3.2. Los programas y los datos generados fueron soportados en PC del tipo Compaq Profesional Workstation en el Centro de Investigación y Desarrollo en Tecnología Geomática (CIDETEG) de la Facultad de Zootecnia, Universidad Autónoma de Chihuahua.

Análisis y procesamiento de imágenes Landsat-TM
Las dos escenas de Landsat TM de marzo y mayo de 1999 se utilizaron para actualizar la cartografía, detectar cambios antes y después del incendio para las áreas siniestradas. Con el propósito de homogenizar la información, las dos escenas tuvieron el mismo procesamiento digital. Para lo anterior se utilizaron los procedimientos sugeridos por Lillesand y Kiefer (1987) los cuales tienen como propósito compensar los errores sistemáticos ocurridos durante el proceso de adquisición de los datos provenientes del sensor. Los procedimientos realizados fueron: 1) corrección atmosférica para atenuar el efecto de la humedad y los diversos contaminantes contenidos en la atmósfera que pueden provocar distorsión en los registros de los niveles de energía electromagnética en términos de intensidad y longitud de onda, la cual repercute en la calidad de la imagen de satélite (Campbell, 1987); 2) análisis radiométrico para ajustar el histograma de la imagen y mejorar o resaltar sus rasgos; y 3) debido a que los rasgos en la imagen no siempre se relacionan con sus coordenadas en el terreno o en los mapas debido a los efectos de la curvatura de la tierra y los desplazamientos por relieve (Eggerton, 1993)
se aplicó el mismo proceso de corrección geométrica. Conforme a lo sugerido por Guevara (1992). En cuanto a número, tipo y distribución de los PCT, se utilizaron 27 puntos de control terrestre distribuidos en la imagen cruda, utilizando como referencia las cartas topográficas en escala 1:50,000. Se obtuvo un error de localización (RMS error) = 0.73 píxeles.

Debido al gran tamaño de la imagen original, el análisis espectral de las variables de interés se analizó mediante el uso de subescenas conforme a la localización de las áreas incendiadas. Este proceso permitió optimizar el almacenamiento de los datos y memoria de la computadora, acceso y procesamiento rápido de las rutinas y una mayor atención hacia las áreas de interés.

Procesamiento y análisis digital del Modelo Digital de Elevación (MDE)
Las variables topográficas seleccionadas para el análisis fueron la altitud, pendiente y exposición. Para su obtención, una vez que los grados cuadrados fueron georreferenciados, se procedió a concatenarlos denominándose al producto final MDEBOCO, debido a que el polígono del área de estudio comprendió dos grados cuadrados. El error de localización (RMS Error) obtenido fue de 1.05 de píxel. El siguiente paso consistió en utilizar el módulo SURFACE de IDRISI 3.2 y a partir del Modelo Digital de Elevación (MDE), se derivaron los Modelos Digitales de Pendientes y Exposición (MDP y MDEX) respectivamente.

Análisis de la Información

Características espectrales de la vegetación. Para examinar la respuesta espectral de la estructura forestal en función de los datos espectrales proporcionados por las bandas de Landsat TM, se obtuvieron las matrices de
correlación de las dos épocas respectivas. Estas matrices sirvieron de base para detectar la relación guardada entre las bandas y así conocer la redundancia de información. Debido a que la banda 1 del mes de marzo no estuvo disponible, ésta fue excluida del análisis. La relación existente fue confirmada por medio de un Análisis de Componentes Principales.

Detención de áreas incendiadas. Además de las combinaciones convencionales de tres bandas para identificar áreas incendiadas, también se realizó una exploración de combinaciones de tres bandas utilizando todas las bandas de Landsat 5 TM. Lo anterior tuvo la finalidad de producir y seleccionar una Composición en Falso Color que permitiera detectar en forma clara y precisa, las áreas afectadas por los incendios.

Análisis pre y postincendio. Con el propósito de conocer los tipos de vegetación afectada, se utilizaron dos subescenas de Landsat TM, una antes del incendio (marzo de 1999) y una post incendio (mayo de 1999) obtenidas a partir de la composición de bandas.

Análisis topográfico. Una vez generados los modelos de las variables de interés, el siguiente proceso consistió en extrapolar las áreas rodalizadas de los incendios a partir de la imagen de satélite hacia los modelos de pendiente y exposición para el análisis específico de las variables altitud, pendiente y exposición. De acuerdo a criterios sugeridos por la Comisión Técnica Interdisciplinaria de la Subdelegación Forestal de la Secretaría del Medio Ambiente y Recursos Naturales (SEMARNAT), el MDP fue reclasificado en siete niveles de pendientes mientras que el MDEx se reclasificó en ocho niveles (Cuadro 1). Una vez reclasificados, se utilizó el comando AREA para determinar la superficie de pendiente y exposición afectada por el incendio para cada una de las áreas.
CUADRO 1. NÍVELES DE PENDIENTE Y EXPOSICIÓN UTILIZADOS COMO CRITERIOS DE RECLASIFICACIÓN EN LAS ÁREAS AFECTADAS.

<table>
<thead>
<tr>
<th>CLASE</th>
<th>PENDIENTE (%)</th>
<th>CLASE (GRADOS)</th>
<th>EXPOSICIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0-10</td>
<td>0-45</td>
<td>Norte</td>
</tr>
<tr>
<td>2</td>
<td>10-20</td>
<td>45-90</td>
<td>Noreste</td>
</tr>
<tr>
<td>3</td>
<td>20-30</td>
<td>90-135</td>
<td>Este</td>
</tr>
<tr>
<td>4</td>
<td>30-40</td>
<td>135-180</td>
<td>Sureste</td>
</tr>
<tr>
<td>5</td>
<td>40-50</td>
<td>180-225</td>
<td>Sur</td>
</tr>
<tr>
<td>6</td>
<td>50-60</td>
<td>225-270</td>
<td>Suroeste</td>
</tr>
<tr>
<td>7</td>
<td>> 60</td>
<td>270-315</td>
<td>Oeste</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>315-360</td>
<td>Noroeste</td>
</tr>
</tbody>
</table>

Evaluación de los mapas. La evaluación de los mapas con los tipos de cubierta en los cuales se discrimina la clase de incendios, fue estimada como el porcentaje de clases correctamente clasificadas. Además del análisis espectral en la imagen y de acuerdo con Story y Congalton (1986), se realizaron verificaciones de campo para comprobar la precisión de los tipos de cubierta clasificadas en los mapas generados.

RESULTADOS Y DISCUSIÓN

Análisis de estadísticas de incendios forestales
Según las estadísticas del período 1995-2000, el estado de Chihuahua es una de las entidades federativas con mayor número de incendios forestales, ocupando el cuarto lugar en el país después del estado de México, el Distrito Federal y Michoacán, con un promedio por año de 580 siniestros. Asimismo, en superficie afectada ocupa el segundo lugar después de Durango, con un promedio de 17,000 hectáreas por año. Los municipios que más se incendian son Guadalupe y Calvo, Madera y Guachochi (Figura 3).

Evaluación de cargas de combustibles forestales
Las cargas de combustibles forestales (leñosos y ligeros) que fluctuaron entre 10 y 68.9 toneladas métricas por hectárea. Se detectó que los lugares con mayor carga de combustibles son Madera con 68.9 ton/hecárea, Guadalupe y Calvo con 66.5 ton/ha y Baborigame con 59.8 ton/ha (Cuadro 2). Existen altas cargas de combustibles a la orilla de los caminos que representan un riesgo de incendio (Figura 4).
CUADRO 2. LOCALIDADES CON MAYOR CARGA DE COMBUSTIBLES FORESTALES.

<table>
<thead>
<tr>
<th>LUGAR</th>
<th>CARGAS DE COMBUSTIBLES (ton /ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUSÁRARE</td>
<td>59.8</td>
</tr>
<tr>
<td>BOCOYNA</td>
<td>44.8</td>
</tr>
<tr>
<td>SAN JUANITO</td>
<td>42.8</td>
</tr>
<tr>
<td>PANALACHI</td>
<td>47.2</td>
</tr>
<tr>
<td>TALAYOTES</td>
<td>52.7</td>
</tr>
<tr>
<td>MADERA</td>
<td>68.9</td>
</tr>
<tr>
<td>GUADALUPE Y CALVO</td>
<td>66.5</td>
</tr>
<tr>
<td>TOMOCHI</td>
<td>50.5</td>
</tr>
<tr>
<td>BABORIGAME</td>
<td>63.4</td>
</tr>
<tr>
<td>BALLEZA</td>
<td>53.1</td>
</tr>
</tbody>
</table>

Características espectrales de la vegetación. Las bandas multiespectrales del satélite Landsat 5 TM generalmente son altamente correlacionadas. El Cuadro 3 presenta las matrices de correlación para cinco y seis bandas de marzo y mayo de 1999. En dicho cuadro se observa que las dos primeras bandas visibles (TM1 de mayo y TM2 de marzo) presentan los valores más bajos de correlación al resto de las bandas, contrastando con las bandas rojas e infrarrojas que inversamente muestran altos coeficientes de correlación.

La transformación de datos en componentes principales se reconoce como una técnica efectiva para mejorar una imagen multiespectral (Crist y Cisone, 1984). El Cuadro 4 muestra como el Análisis de Componentes Principales para las escenas de marzo y mayo concentra los más altos porcentajes de la varianza en el componente 1 (marzo = 73.05 %, mayo = 74.58%). En general, se observa que los valores obtenidos de los eigenvectores en las bandas 3, 4, 5 y 7 dominan este componente debido a la alta varianza que presentan. En cambio, se presenta un dominio de las dos primeras bandas visibles en el componente dos (banda 1 en mayo y banda 2 en marzo) mismos que concentran el 16.65% y 19.05% de la variabilidad de los datos espectrales.

Los valores obtenidos explican la importancia de la cubierta vegetal y su separabilidad espectral del suelo como componentes principales en el área bajo estudio. El análisis digital de las características de reflectancia del ecosistema forestal, muestran la alta respuesta del follaje verde en la región infrarroja del espectro electromagnético, explicado por el dominio de las bandas infrarrojas. Inversamente, el dominio de las bandas visibles explican la contribución de los suelos desnudos y/o áreas degradadas como contraparte a la estructura forestal. Lo anterior es notorio en un ecosistema que
define claramente dos estructuras principales; bosques y áreas abiertas dentro de las cuales se incluye la rocosidad del suelo.

CUADRO 3. MATRICES DE CORRELACIÓN PARA CINCO Y SEIS BANDAS DE MARZO Y MAYO DE 1999 DEL SATÉLITE LANDSAT 5 TM.

<table>
<thead>
<tr>
<th>MARZO DE 1999</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandas</td>
<td>TM2</td>
</tr>
<tr>
<td>TM2</td>
<td>1.000</td>
</tr>
<tr>
<td>TM3</td>
<td>0.203</td>
</tr>
<tr>
<td>TM4</td>
<td>0.136</td>
</tr>
<tr>
<td>TM5</td>
<td>0.191</td>
</tr>
<tr>
<td>TM7</td>
<td>0.192</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MAYO DE 1999</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandas</td>
<td>TM1</td>
</tr>
<tr>
<td>TM1</td>
<td>1.000</td>
</tr>
<tr>
<td>TM2</td>
<td>0.032</td>
</tr>
<tr>
<td>TM3</td>
<td>0.028</td>
</tr>
<tr>
<td>TM4</td>
<td>0.046</td>
</tr>
<tr>
<td>TM5</td>
<td>0.029</td>
</tr>
<tr>
<td>TM6</td>
<td>0.028</td>
</tr>
</tbody>
</table>

TM1 a TM7 = Bandas 1 a 7 de Landsat -TM

Los valores obtenidos explican la importancia de la cubierta vegetal y su separabilidad espectral del suelo como componentes principales en el área bajo estudio. El análisis digital de las características de reflectancia del ecosistema forestal, muestran la alta respuesta del follaje verde en la región infrarroja del espectro electromagnético, explicado por el dominio de las bandas infrarrojas. Inversamente, el dominio de las bandas visibles explican la contribución de los suelos desnudos y/o áreas degradadas como contraparte a la estructura
forestal. Lo anterior es notorio en un ecosistema que define claramente dos estructuras principales; bosques y áreas abiertas dentro de las cuales se incluye la rocosidad del suelo.

CUADRO 4. EIGENVECTORES DE LAS MATRICES DE CORRELACIÓN DE LAS BANDAS DE TM PARA MARZO Y MAYO DE 1999, INDICANDO LA CONTRIBUCIÓN DE CADA BANDA PARA LOS COMPONENTES PRINCIPALES.

<table>
<thead>
<tr>
<th>COMPONENTE</th>
<th>C1</th>
<th>C 2</th>
<th>C3</th>
<th>C4</th>
<th>C5</th>
<th>C6</th>
</tr>
</thead>
<tbody>
<tr>
<td>% var.</td>
<td>74.5</td>
<td>8</td>
<td>16.65</td>
<td>5.25</td>
<td>2.56</td>
<td>0.63</td>
</tr>
<tr>
<td>eigenval.</td>
<td>4.47</td>
<td>1.00</td>
<td>0.32</td>
<td>0.15</td>
<td>0.04</td>
<td>0.02</td>
</tr>
<tr>
<td>TM.1</td>
<td>0.02</td>
<td>-0.99</td>
<td>-0.02</td>
<td>-0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>TM.2</td>
<td>0.45</td>
<td>0.01</td>
<td>0.04</td>
<td>-0.55</td>
<td>-0.10</td>
<td>-0.68</td>
</tr>
<tr>
<td>TM.3</td>
<td>0.46</td>
<td>0.01</td>
<td>-0.04</td>
<td>-0.49</td>
<td>-0.13</td>
<td>0.72</td>
</tr>
<tr>
<td>TM.4</td>
<td>0.41</td>
<td>-0.01</td>
<td>0.83</td>
<td>0.31</td>
<td>0.18</td>
<td>0.03</td>
</tr>
<tr>
<td>TM.5</td>
<td>0.45</td>
<td>0.01</td>
<td>-0.28</td>
<td>0.54</td>
<td>-0.64</td>
<td>-0.05</td>
</tr>
<tr>
<td>TM.6</td>
<td>0.44</td>
<td>0.01</td>
<td>-0.47</td>
<td>0.22</td>
<td>0.72</td>
<td>-0.02</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COMPONENTE</th>
<th>C1</th>
<th>C 2</th>
<th>C 3</th>
<th>C 4</th>
<th>C 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>% var.</td>
<td>73.05</td>
<td>19.05</td>
<td>5.18</td>
<td>2.06</td>
<td>0.65</td>
</tr>
<tr>
<td>eigenval.</td>
<td>3.65</td>
<td>0.95</td>
<td>0.26</td>
<td>0.10</td>
<td>0.03</td>
</tr>
<tr>
<td>TM.1</td>
<td>0.135</td>
<td>-0.989</td>
<td>0.053</td>
<td>0.019</td>
<td>0.008</td>
</tr>
<tr>
<td>TM.2</td>
<td>0.502</td>
<td>0.045</td>
<td>-0.104</td>
<td>-0.824</td>
<td>-0.234</td>
</tr>
<tr>
<td>TM.3</td>
<td>0.467</td>
<td>0.114</td>
<td>0.851</td>
<td>0.138</td>
<td>0.157</td>
</tr>
<tr>
<td>TM.4</td>
<td>0.506</td>
<td>0.060</td>
<td>-0.254</td>
<td>0.524</td>
<td>-0.631</td>
</tr>
<tr>
<td>TM.5</td>
<td>0.503</td>
<td>0.054</td>
<td>-0.443</td>
<td>0.1608</td>
<td>0.721</td>
</tr>
</tbody>
</table>

C1 a C6 = Componentes Principales.
eigvec. 1 a eigvec. 6 = Eigenvectores 1 a 6.
El análisis multivariado hace posible evitar el problema de multicolinealidad de los datos y obtener una nueva imagen que produce el más grande contraste entre los objetos (Beaubien, 1994). Pinedo et al., (1998) encontraron que el 94.7% de la varianza de las bandas de Landsat TM se concentró en el componente 1, mientras que el 2.22% se concentró en el componente 2. Este autor explica que todas las bandas de TM a excepción de la primera, presentan un promedio ponderado en el componente 1 mientras que la banda 1 domina el componente 2. Aunque la concentración de las varianzas fueron diferentes a las obtenidas en este estudio, los componentes vegetación y suelo se comportaron igualmente dominantes en el componente 1 y 2. Adicionalmente, Beaubien (1994) encontró que el tercer componente principal contiene información adicional relativamente menor a la varianza total en relación con los primeros dos.

Detección de áreas incendiadas. Debido a la capacidad de Landsat TM para estimar daños económicos tanto en plantaciones como sitios de producción maderable, fue necesario producir un mapa actualizado con la clase incendio visualizada y asociada a otras clases de usos de suelo. Las bandas mono temporales permitieron producir una composición en falso color con capacidad para discriminar las áreas incendiadas, clases de vegetación y usos de suelo (Figura 5). Denominada CFC347, esta composición combinó la banda 3 en el canal azul, la banda 4 en el canal verde y la banda 7 en el canal rojo, que discriminó en forma clara los incendios. El mapa final permitió generar 6 clases que se describen en la Figura 6.

1. **Bosque Comercial de Condición Regular.** Caracterizado por masas de bosques regulares de acuerdo a la condición del bosque, esta clase presenta los más bajos niveles de reflectancia y
contrasta fuertemente con los suelos y áreas desnudas. Visualmente presenta un patrón de negro a verde oscuro (Figura 6a).

2. **Bosque Comercial de Condición Irregular.** Esta clase presenta bosques de producción regular a baja. El tipo de vegetación aparece en rangos de verde pistacho a verdes claros. Esta clase puede ser confundida con bosques de baja producción maderable (Figura 6b).

3. **Bosque no Comercial.** Representada en tonalidad verde limón, esta clase representa los bosques no comerciales sujetos a recuperación o que no presentan las condiciones de producción potencial clasificándose como bosques no aprovechables (Figura 6c).

4. **Vegetación de Transición.** Representada por matorrales y bosque de galería, esta clase se muestra en tonalidades grises y magentas. Puede confundirse con las plantaciones comerciales (Figura 6d).

5. **Áreas Abiertas con Suelo parcialmente Cubierto.** Representa los suelos desnudos, áreas de cultivos, pastizales y áreas degradadas. En la época seca estas áreas aparecen con patrones heterogéneos de colores claros (Figura 6e).

6. **Áreas Afectadas por Incendios Forestales.** Se muestran en tonalidades de negro a rojo púrpura pasando por rojos magentas, esta clase se discrimina en forma clara y su variación de tonalidad se debe a la magnitud del incendio (Figura 6f). No obstante, la verificación de campo
mostró que esto puede ser atribuido también a la remoción completa o parcial de la cubierta vegetal.

Figura 5. Visualización de áreas afectadas por incendios forestales y otros tipos de cubierta en una Composición en Falso Color (CFC347) Landsat TM.
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a)</td>
<td>Bosque Comercial Condición Regular</td>
</tr>
<tr>
<td>b)</td>
<td>Bosque Comercial Condición Irregular</td>
</tr>
<tr>
<td>c)</td>
<td>Bosque no Comercial</td>
</tr>
<tr>
<td>d)</td>
<td>Vegetación de Transición</td>
</tr>
<tr>
<td>e)</td>
<td>Áreas Abiertas con Suelo Parcialmente Cubierto</td>
</tr>
<tr>
<td>f)</td>
<td>Áreas Afectadas por Incendios Forestales</td>
</tr>
</tbody>
</table>

Figura 6 (a, b, c, d, e, f). Firma espectral de cinco clases de cubierta vegetal a través de CFC-347, caracterizadas por diferentes estados de vegetación de bajo crecimiento.
Para una visualización a detalle, la Figura 7 muestra dos áreas afectadas por incendios con imágenes monoterminales Landsat TM registradas en mayo de 1999. Conforme a la severidad del incendio y tipo de vegetación afectada, las tonalidades se presentan en rangos de negro, café y rojo púrpura. Las firmas espectrales y su verificación en el campo mostraron que el color negro representa el daño total mientras que el café y café-magenta se asocia con daños medianos. El rojo púrpura se asocia a un incendio reciente que no ha definido su estado e impacto final.

De acuerdo con Khorram et al., (1991) la longitud de onda para clasificar imágenes depende de los tipos de cubierta que están siendo estudiados. El análisis visual y digital de las clases de la composición obtenida en este estudio concuerdan con los resultados obtenidos por Ahern et al., (1991). Estos autores encontraron que las áreas quemadas son más visibles con la combinación de las bandas 3, 4 y 7 que con cualquier otro tipo de combinación.

Asimismo, de acuerdo con Siegert y Hoffman (2000), este procedimiento digital de imágenes permite además de detectar las áreas afectadas por el fuego, realizar un análisis multitemporal para apoyar estudios de fragmentación y dinámica temporal de bosques (Razafimpanilo et al., 1995).

Análisis pre y postincendio. La estratificación de los datos provenientes de las áreas incendiadas permitió analizar las condiciones de la vegetación con firmas espectrales similares a partir de las escenas de Landsat TM de marzo comparándola con la misma escena de Landsat TM de mayo. Con ello se identificaron las estructuras forestales afectadas.
Figuras 7. Visualización de dos áreas en el municipio de Bocoyna con diferentes grados de afectación por incendios representadas en diferentes tonalidades de rojo de acuerdo a una escena de TM de mayo de 1999.

La Figura 7a muestra una subescena de Landsat TM de marzo de 1999 (antes del incendio) mientras que la Figura 8b muestra la misma subescena en el mes de mayo del mismo año (después del incendio). Como se puede observar, es evidente la tonalidad de café magenta a rojo púrpura. Esto indica visualmente los diferentes grados de severidad del incendio, lo que puede ayudar a corroborar la efectividad del uso de escenas Landsat TM en la detección de incendios forestales.

De acuerdo con los criterios seguidos por Siegert y Hoffman (2000) el análisis preliminar permite detectar dos
clases de daño: 1) daño severo, que es la total destrucción de la vegetación por el fuego que, en el caso de este estudio, las áreas aparecen de negro a rojo vivo y 2) áreas con tonalidad rojo magenta que representan arriba del 50% de la vegetación que ha sido incendiada.

Análisis de datos espectrales–datos topográficos de áreas incendiadas. La detección y posterior digitalización (rodalización) de las áreas incendiadas a partir de la CFC347, permitió extrapolar el polígono de éstas al Modelo Digital de Elevación con el propósito de realizar el análisis a niveles específicos de pendiente y exposición para cada una de las áreas evaluadas. La Figura 8 muestra la digitalización de un área incendiada en una subescena de CFC347 a partir de la cual se estimó la superficie y tipo de vegetación afectada. Para el análisis de las variables biofísicas, la misma figura muestra el polígono del área rodalizada dentro del Modelo Digital de Elevación procesado, a partir del cual se generaron los Modelos Digitales de Pendiente (MDP) y Exposición (MDEx).

La Figura 9 muestra como el rodal wpentin7 obtenido a partir del MDP, presenta 998.81 hectáreas siniestradas, de las cuales el 82.64% corresponden a gradientes de pendiente del 0 al 10% mientras que en pendientes mayores del 30% las áreas siniestradas representan tan solo el 5%. El resto (26.67%) corresponde a las pendientes ubicadas en rangos del 10 al 20% de pendiente. Con respecto al análisis espacial de la exposición, la Figura 10 muestra el rango de exposiciones (wexpoin7) exhibido por dos áreas típicas siniestradas obtenidas a partir de MDEx. Como ejemplo, en wexpoin7 las exposiciones norte (noreste y noroeste) representan el 20.1% mientras que las exposiciones sur representadas por los rangos sureste y suroeste representan el 31.61% del total del área. El resto se distribuye entre las exposiciones este y oeste. El conocimiento de la distribución de esta variable es importante desde el punto de vista ecológico debido a que las especies de plantas responden a efectos fisiográficos (Proy et al., 1989).
De acuerdo con Valencia (1995) la exposición y la altitud influyen en la formación de gradientes de humedad que determinan la distribución de la vegetación así como la intensidad de algunas de sus características.

Figura 8. Polígono de un área incendiada digitalizada en una subescena de CFC347 y extrapolado a una subescena del Modelo Digital de Elevación.
Figura 9. Distribución del rodal de pendientes (wpenin7) obtenido a partir del Modelo Digital de Pendientes.
Figura 10. Distribución de la variable exposición en wexpoin7 obtenido del Modelo Digital de Exposición.

Lo anterior puede ser evidenciado por el hecho de que las especies de pino prosperan en exposiciones mísicas, mientras que otras especies presentan buenas respuestas a ambientes xéricos. En programas de reforestación, la distribución de esta variable es importante para la selección de las especies idóneas. Otro criterio es que todas aquellas áreas afectadas que no cumplan las condiciones para programas de reforestación comercial, pueden ser segregadas del mapa final (Johnston, 1998).

Martínez (2000) identificó tres tipos de daños en 10 predios evaluados. Los daños fueron severo, medio y total, mencionando en su estudio la importancia de utilizar
las imágenes Landsat–TM para realizar este tipo de análisis. Otros investigadores (Siegert y Hoffmann, 2000; Barbosa et al., 1999 y Razafimpaniolo et al., 1995) resaltaron la importancia de utilizar datos de sensores remotos para analizar el tamaño y nivel del área incendiada así como para estimar impactos económicos y ecológicos.

La evaluación de los mapas mostraron la capacidad de Landsat TM para detectar y discriminar las áreas incendiadas en relación con otros tipos de cubierta. La probabilidad de clasificar correctamente las áreas incendiadas correspondió a un 100% del total de las áreas visitadas en el campo, mientras que combinada con los tipos de cubierta el porcentaje correspondió a 84%.

CONCLUSIONES Y RECOMENDACIONES

Con base en los resultados obtenidos de este estudio, se presentan las siguientes conclusiones y recomendaciones:

El sensor TM (Thematic Mapper) por su alta resolución, permite estimar con mayor precisión los daños ocasionados por incendios forestales.

Las zonas con más cargas de combustibles forestales como Guadalupe y Calvo, Guachochi y Madera, pueden tener incendios de mayor magnitud, por lo que en épocas críticas deben tener una mayor vigilancia.

Las áreas con incendios de alta intensidad como la zona de San Juanito, municipio de Bocoyna, deben tener una restauración ecológica oportunamente.

El desarrollo de procedimientos y análisis post-incendios por medio de datos de Landsat-TM y Modelos Digitales
de Elevación, permite obtener información confiable respecto a tamaño de las áreas incendiadas, tipo de vegetación afectada y caracterización de la pendiente y exposición del terreno para apoyar la toma de decisiones en programas de reforestación y restauración ecológica.

La combinación de las bandas 3, 4 y 7 en los canales azul, verde y rojo permitió la mejor discriminación de las áreas incendiadas. Esta imagen compuesta puede ser la base para estimar el tamaño del incendio y el tipo de estructura forestal afectada.

El Análisis de Componentes Principales confirmó su capacidad para concentrar la variación relativa a la vegetación en el componente 1, dominado por las bandas infrarrojas, mientras que la variación espectral relativa al suelo se concentró en el componente 2 dominada por la banda 1 del espectro visible.

Los rangos de exposición y pendiente empleados en el estudio fueron eficientes para clasificar áreas siniestreadas. La escala media (1:250,000) representada con esta fuente de datos puede considerarse adecuada para los programas de protección forestal, desarrollada por las catorce regiones forestales del estado de Chihuahua. Sin embargo, para incrementar la precisión de traslape de los polígonos generados en la imagen y extrapolados al Modelo Digital de Elevación, se recomienda utilizar Modelos Digitales de Elevación con escala 1:50,000.

Es importante señalar que la metodología obtenida a partir del análisis de este estudio puede ser manejada por cualquier técnico y responsable de los recursos naturales dado a que los programas, equipo informático y técnicas de análisis de las imágenes de satélite y Modelos Digitales de Elevación son fácilmente accesibles. Lo anterior coadyuva al apoyo de programas de reforestación
y restauración ecológica de acuerdo a la disponibilidad de recursos económicos y probabilidades de éxito de las operaciones.

LITERATURA CITADA

Eggerton, J. 1993. Identification or riparian areas and associated springs with the aid of satellite imagery,

Greenlee, C.J. 1993. Spatial characteristics of montane forest communities in the Organ Mountains, New Mexico, using remote sensing and GIS technology. Thesis Master of Applied Geography, New Mexico State University, Las Cruces, New Mexico.

AGRADECIMIENTOS

Este trabajo formó parte del proyecto Núm. 19990406015 financiado por el CONACYT-SIVILLA y la Fundación Produce Chihuahua A.C., por lo que los autores expresan su agradecimiento a estas Instituciones. Se reconoce el apoyo de la SEMARNAT-Delegación Chihuahua por proporcionar las imágenes de satélite y parte de las estadísticas de incendios forestales y al Laboratorio de Sistemas de Información Forestal de la Facultad de Zootecnia de la Universidad Autónoma de Chihuahua por su participación en el análisis de las imágenes de satélite. Asimismo, se agradece a los revisores técnicos sus sugerencias y comentarios para mejorar la presente publicación.
En el proceso editorial de esta publicación participaron las siguientes personas del Sitio Experimental La Campana-Madera:

COMITÉ EDITORIAL:

Presidente: M. C. Manuel Gustavo Chávez Ruiz
Secretario: M. C. Regina Leticia Carrillo Romo
Revisores Técnicos: M. C. Carlos R. Lara Macías
 Dr. Rubén Alfonso Saucedo Terán
 M. C. Manuel Alarcón Bustamante
Vocal Forestal: M. C. Manuel Alarcón Bustamante
Edición: M. C. Regina Leticia Carrillo Romo

Sitio Experimental La Campana-Madera
Ave. Homero 3744, Fracc. El Vergel
Chihuahua, Chih. C.P. 31100.
Tel (614) 484 40 40
Correo electrónico del autor: alanis.hector@inifap.gob.mx
Sitio red nacional: www.inifap.gob.mx
Sitio red estatal: www.inifap-chihuahua.gob.mx
<table>
<thead>
<tr>
<th>Investigadores</th>
<th>Red de Innovación</th>
</tr>
</thead>
<tbody>
<tr>
<td>M. C. Héctor Eligio Alanis Morales</td>
<td>Manejo Forestal Sustentable</td>
</tr>
<tr>
<td>M. C. Manuel Alarcón Bustamante</td>
<td>Plantaciones Forestales</td>
</tr>
<tr>
<td>M.S. Saúl Alvidrez Vitolás</td>
<td>Socioeconomía</td>
</tr>
<tr>
<td>Ing. Miguel Cano Rodríguez</td>
<td>Manejo Forestal Sustentable</td>
</tr>
<tr>
<td>M. C. Regina Leticia Carrillo Romo</td>
<td>Manejo de Pastizales</td>
</tr>
<tr>
<td>M. C. Antonio H. Chávez Silva</td>
<td>Bioenergéticos</td>
</tr>
<tr>
<td>M. C. Raúl Escobar Tolentino</td>
<td>Socioeconomía</td>
</tr>
<tr>
<td>Dr. Mario H. Esqueda Coronado</td>
<td>Ovinos y Caprinos</td>
</tr>
<tr>
<td>M. C. Arturo Estrada Arteaga</td>
<td>Bovinos Carne</td>
</tr>
<tr>
<td>M. I. Esteban Gutiérrez Ronquillo</td>
<td>Bovinos Carne</td>
</tr>
<tr>
<td>Ph. D. Pedro Jurado Guerra</td>
<td>Manejo de Pastizales</td>
</tr>
<tr>
<td>M. C. Carlos René Lara Macías</td>
<td>Servicios Ambientales</td>
</tr>
<tr>
<td>Dr. Martín Martínez Salvador</td>
<td>Manejo Forestal Sustentable</td>
</tr>
<tr>
<td>Dr. Carlos Morales Nieto</td>
<td>Recursos Genéticos</td>
</tr>
<tr>
<td>Biol. Mario H. Royo Márquez</td>
<td>Manejo de Pastizales</td>
</tr>
<tr>
<td>Dr. Rubén A. Saucedo Terán</td>
<td>Manejo de Pastizales</td>
</tr>
<tr>
<td>Dr. J. Santos Sierra Tristán</td>
<td>Manejo de Pastizales</td>
</tr>
<tr>
<td>Dr. Melitón Tena Vega.</td>
<td>Servicios Ambientales</td>
</tr>
</tbody>
</table>

Esta publicación se terminó de imprimir el 1 de diciembre de 2009, en Impresos PAyCAR, Niños Héroes 801, Cd. Meoqui, Chih. México. Su tiraje fue de 500 ejemplares.