Manejo del cultivo de sandía en la región centro-sur del estado de Chihuahua
Manejo del Cultivo de Sandía
en la Región Centro-Sur del Estado de Chihuahua

inifap
Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias

Folleto técnico No. 15 • 2003
Manejo del Cultivo de Sandía
en la Región Centro-Sur del Estado de Chihuahua

Gerardo Fco. ACOSTA RODRÍGUEZ¹
Roberto GALVÁN LAMAS²
Manuel LUJÁN FAVELA³
Francisco J. QUIÑONES PANDO⁴
Noe CHÁVEZ SÁNCHEZ⁵
Jesús A. PILAR ALVAREZ⁶

¹Investigadores de los Programas de ¹Hortalizas y Semillas, ¹ Fitopatología,
²Hortalizas, ²Entomología, ²Matemáticas Aplicadas y Nutrición a ² Irrigación
del Campo Experimental Delicias

inifap
Instituto Nacional de Investigaciones Forestales,
Agrícolas y Pecuarias

Folleto técnico No. 15 • 2003
SECRETARÍA DE AGRICULTURA, GANADERÍA, DESARROLLO RURAL, PESCA Y ALIMENTACIÓN
Javier Bernardo Usabiaga Arroyo
Secretario

INSTITUTO NACIONAL DE INVESTIGACIONES FORESTALES, AGRÍCOLAS Y PECUARIAS
Dr. Jesús Moncada de la Fuente
Director General
Dr. Ramón Armando Martínez Parra
Coordinador General de Investigación y Desarrollo
Dr. Sebastián Acosta Núñez
Director General de Investigación Agrícola
Dr. Hugo Ramírez Maldonado
Director General de Investigación Forestal
Dr. Carlos A. Vega y Murguía
Director General de Investigación Pecuaria

CENTRO DE INVESTIGACIÓN REGIONAL NORTE-CENTRO
Dr. Homero Salinas González
Director Regional
Dr. Héctor Mario Quiroga Garza
Director de Investigación
M.C. Antonio Chávez Silva
Director de Coordinación y Vinculación Chihuahua

CAMPO EXPERIMENTAL DELICIAS
Ing. Gamaliel Orozco Hernández
Jefe de Campo

DERECHOS RESERVADOS
© Gerardo Fco. Acosta Rodríguez, 2003
Km. 2 Carretera Delicias-Rosales
Apartado postal 81
Cd. Delicias, Chihuahua, México, CP 33000
Tel. 01(639) 472-19-74
Fax.01(639) 472-21-51
Correo electrónico: inifap@smart.net.mx
© Campo Experimental Delicias, 2003
Contenido

Introducción ... 6
Investigaciones realizadas con variedades e híbridos 7
Preparación del terreno 12
Acolchado plástico .. 12
 Efecto del acolchado plástico 12
 Color del acolchado plástico 14
 Características e instalación del plástico 15
Sistema de establecimiento 15
 Método de siembra 15
 Sierra directa ... 15
 Trasplante .. 16
 Alternativas de establecimiento 17
Época de siembra .. 17
 Sierra directa ... 17
 Sierra del almácigo en charolas 19
Conducción del almácigo 20
Fertilización de plántulas en el invernadero 20
Época y método de trasplante 20
Riegos .. 21
Fertirrigación .. 23
Fertilización ... 24
Labores de cultivo .. 25
Manejo integrado de insectos plaga 26
Manejo integrado de enfermedades 29
Cosecha .. 32
Literatura citada ... 32
Introducción

La sandía es un fruto muy apreciado cuya demanda se incrementa en época de calor. Ocupa el quinto lugar en importancia, entre las hortalizas que se cultivan en México y el primero entre la familia de las cucurbitáceas en cuanto a superficie cosechada.

A nivel nacional, en el 2001 se cosecharon 43,927 hectáreas de sandía, con una producción de 968,471 toneladas y un rendimiento promedio de 22.1 t ha\(^{-1}\). Los principales estados productores de esta hortaliza fueron: Chihuahua, Sonora, Coahuila y Durango (Fuente: Centro de Estadística Agropecuaria. SAGARPA. Año agrícola 2001).

En el 2001, el estado de Chihuahua participó con el 12% de la producción nacional de sandía, con una superficie cosechada de 4,322 hectáreas, una producción de 115,835 toneladas y un rendimiento promedio de 26.8 t ha\(^{-1}\) (SAGARPA, 2002). En la región de Delicias, Chihuahua en el 2001, se establecieron 2,017 hectáreas, casi el doble de la superficie establecida en 1999 (SAGARPA, 1999; SAGARPA, 2001). El incremento de la superficie se atribuye a que las condiciones agroclimáticas son favorables para su establecimiento y desarrollo; además, éste cultivo resulta remunerativo cuando las condiciones de comercialización son favorables. Desde el punto de vista social es también importante, ya que es una fuente de empleo importante, de tal forma que se requieren aproximadamente 100 jornales por hectárea durante el ciclo del cultivo.

Dada la importancia del cultivo es importante generar tecnología para mejorar su rentabilidad y sostenibilidad. El conocimiento de la adaptación y comportamiento de los genotipos en cuanto a su potencial de rendimiento, calidad de fruto y período de producción considerando los requerimientos del mercado es prioritario. Además, la poca disponibilidad del agua de riego y la baja rentabilidad de los cultivos, justifican el adecuar y conocer el efecto y uso de técnicas impactantes como son la fertirrigación y acolchado, las cuales contribuirían además a hacer un uso más eficiente del agua de riego. Resulta también imprescindible el conocimiento de las técnicas que se requieren para obtener una producción eficiente del cultivo como son: el sistema de establecimiento, fertilización, control de organismos dañinos, riegos, prácticas culturales y cosecha. Por lo anterior en el presente trabajo se presenta información técnica sobre estos temas, la cual se respalda con investigaciones efectuadas en el Campo Experimental de Delicias, Chihuahua.
Investigaciones realizadas con variedades e híbridos

A nivel regional, se han realizado evaluaciones del comportamiento de variedades e híbridos en varios años. En 1998 se encontró que de tres variedades de sandía evaluadas en cuatro fechas de siembra directa, las más precoces y con mayor rendimiento comercial fue Charleston Grey y Jubilee (Cuadro 1); aunque, en la fecha más temprana (14 de marzo) Peacock Improved alcanzó el mayor rendimiento, con un valor de 44.1 ton/ha. Por otro lado, la variedad Jubilee produjo frutos de mayor peso. Es importante señalar que estas variedades continúan siendo una alternativa de bajo costo.

Cuadro 1. Fenología y rendimiento comercial de variedades de sandía con el método de siembra directa (promedio de tres fechas de siembra: 14 y 30 de marzo y 15 de abril) en Delicias, Chih. P-V 1988. INIFAP-CEDEL.

<table>
<thead>
<tr>
<th>Genotipos</th>
<th>Inicio de floración femenina</th>
<th>Primer corte</th>
<th>Último corte</th>
<th>Número de cortes</th>
<th>Peso de fruto (kg)</th>
<th>Rendimiento comercial (t ha⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charleston Grey</td>
<td>65</td>
<td>104</td>
<td>140</td>
<td>6</td>
<td>5.8</td>
<td>34.0</td>
</tr>
<tr>
<td>Jubilee</td>
<td>71</td>
<td>105</td>
<td>142</td>
<td>6</td>
<td>6.8</td>
<td>34.6</td>
</tr>
<tr>
<td>P. improved</td>
<td>71</td>
<td>111</td>
<td>140</td>
<td>5</td>
<td>5.7</td>
<td>30.9</td>
</tr>
</tbody>
</table>

En 1998, Acosta et al. (1998) evaluaron cinco híbridos en una fecha de establecimiento temprana (siembra el 13 de marzo y trasplante el 15 de abril). En el Cuadro 2, se observa que los híbridos más productivos fueron Royal Sweet y Muñeca. Muñeca tuvo la mayor producción a primer corte. Por otra parte, los genotipos con mayores porcentajes de frutos grandes fueron Royal Sweet, RWM 121 y Muñeca, con 23, 22 y 18%, respectivamente. Mientras que, la mayor producción de tamaño mediano se obtuvo con el híbrido Sangría (62%), seguido por RWM 8008 y Royal Sweet (53 y 49%, respectivamente).

Los híbridos con los mayores valores de grados brix (mayor dulzura) tanto en el corazón como en la parte intermedia, a través de los cortes de producción, fueron Muñeca, RWM 8008 y Sangría (Cuadro 2). Los valores de largo de fruto variaron con los cortes de producción con tendencia a incrementarse en los híbridos RWM-121 y Sangría, principalmente entre el primer y tercer corte. Los genotipos con el mayor largo de fruto fueron Muñeca, Sangría y RWM 121. Por otro lado, Royal Sweet y RWM 8008 produjeron frutos más anchos. El espesor de cásca fue muy similar entre los híbridos evaluados.
Cuadro 2. Características de fruto (promedios de cinco cortes) de cinco híbridos de sandía en la región de Delicias, Chih. P-V 1998. INIFAP-CEDEL.

<table>
<thead>
<tr>
<th>Híbrido</th>
<th>Grados Brix</th>
<th>Largo de Fruto (cm)</th>
<th>Ancho de Fruto (cm)</th>
<th>Espesor de cáscara (cm)</th>
<th>Rendimiento comercial (t ha⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RWM 8008</td>
<td>10.6</td>
<td>23.4</td>
<td>20.6</td>
<td>1.3</td>
<td>55.2</td>
</tr>
<tr>
<td>RWM 121</td>
<td>9.7</td>
<td>39.8</td>
<td>19.8</td>
<td>1.2</td>
<td>82.6</td>
</tr>
<tr>
<td>Royal Sweet</td>
<td>9.8</td>
<td>36.3</td>
<td>20.8</td>
<td>1.3</td>
<td>94.5</td>
</tr>
<tr>
<td>Muñeca</td>
<td>10.8</td>
<td>42.0</td>
<td>19.7</td>
<td>1.3</td>
<td>90.8</td>
</tr>
<tr>
<td>Sangría</td>
<td>10.3</td>
<td>41.4</td>
<td>18.0</td>
<td>1.3</td>
<td>86.0</td>
</tr>
</tbody>
</table>

En los ciclos Primavera-Verano 2000 y 2001 se evaluaron 15 híbridos con semilla y siete híbridos sin semilla, bajo condiciones de riego por cintilla. De acuerdo con los Cuadros 3 y 4, de los híbridos con semilla, los que tuvieron los mayores rendimientos comerciales en el 2000 fueron Sangría y Delta; mientras que, en el 2001 fueron Mercedes y Baron. Por otro lado, de los híbridos sin semilla, en el 2000 y 2001 Tri-X Brand Palomar, Tri-X B. Carousel y RWM-8073 fueron los mejores (Acosta, 2002; Galván et al., 2002). La diferencia entre rendimientos de un año a otro (mayores en el 2001) se puede atribuir principalmente al efecto de la fecha de siembra, ya que la siembra del 2001 se realizó 29 días más temprano que la del 2000, lo cual se reflejó en un mayor número de cortes; ésto, en base a que Acosta y Luján (1988) encontraron que el rendimiento se incrementa a medida que se adelanta la fecha de siembra.

De los híbridos con semilla, los genotipos más precoces en cuanto a rendimiento a primer corte, en el 2000 fueron Fiesta y RWM-8073; mientras que en el 2001, Celebration y Sangría alcanzaron los mayores valores. Por otra parte, de los híbridos sin semilla, Tri-X Brand 313, RWM-8073 y Tri-X Brand Carousel fueron los más precoces (Cuadros 3 y 4). Además, se observó que los genotipos sin semilla presentaron un mayor crecimiento de follaje en comparación con los genotipos con semilla.

Los híbridos con semilla tendieron a alcanzar un mayor diámetro polar, sobresaliendo RWM-8074, Sangría y RWM-8036 (Cuadro 3); mientras que, los mayores valores en diámetro ecatorial se encontraron en los híbridos sin semilla RWM-8073 y Tri-X B. Carousel. El grosor de pericarpo varió de 1.2 a 1.3 cm con comportamiento similar entre híbridos con y sin semilla. Por otra parte, el contenido de azúcares en grados Brix en ambos años de estudio
varió de 10.4 a 12.4 sin una tendencia definida entre los grupos de genotipos, sobresaliendo W-5038, 8102, Mardi Grass y Tri-X Brand 313. Es importante señalar que estos valores son similares o mayores a los obtenidos por Mendoza et al. (1999) en la Comarca Lagunera, bajo condiciones de riego presurizado.

<table>
<thead>
<tr>
<th>Genotipos</th>
<th>Rendimiento (t ha⁻¹)</th>
<th>Diámetro (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Comercial (7 cortes)</td>
<td>Primer corte (9 de ago.)</td>
</tr>
<tr>
<td>Con Semilla</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H. Delta</td>
<td>52.5</td>
<td>13.3</td>
</tr>
<tr>
<td>H. RWM-8074-VP</td>
<td>47.5</td>
<td>8.3</td>
</tr>
<tr>
<td>H. Sangría</td>
<td>54.5</td>
<td>11.2</td>
</tr>
<tr>
<td>H. RWM-8036 VP</td>
<td>48.8</td>
<td>17.2</td>
</tr>
<tr>
<td>H. Mardi Gras</td>
<td>43.8</td>
<td>6.9</td>
</tr>
<tr>
<td>H. Fiesta</td>
<td>44.1</td>
<td>17.4</td>
</tr>
<tr>
<td>Sin Semilla</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H. Crimson Trio</td>
<td>48.1</td>
<td>3.8</td>
</tr>
<tr>
<td>H. RWM-8073</td>
<td>54.2</td>
<td>3.9</td>
</tr>
<tr>
<td>H. Tri-X Brand Palomar</td>
<td>62.4</td>
<td>2.6</td>
</tr>
<tr>
<td>H. Tri-X B. Carousel</td>
<td>61.9</td>
<td>1.9</td>
</tr>
<tr>
<td>H. Tri-X Brand 313</td>
<td>57.1</td>
<td>5.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Genotipos</th>
<th>Rendimiento (t ha⁻¹)</th>
<th>Grados Brix</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Comercial (8 cortes)</td>
<td>Primer corte (18 de jul.)</td>
</tr>
<tr>
<td>Con Semilla</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H. Mercedes</td>
<td>85.3</td>
<td>13.5</td>
</tr>
<tr>
<td>H. Barón</td>
<td>84.4</td>
<td>11.8</td>
</tr>
<tr>
<td>H. W-5038</td>
<td>76.5</td>
<td>8.0</td>
</tr>
<tr>
<td>H. Celebration</td>
<td>76.4</td>
<td>24.2</td>
</tr>
<tr>
<td>H. 8102</td>
<td>70.0</td>
<td>8.1</td>
</tr>
<tr>
<td>H. Mardi Gras</td>
<td>67.7</td>
<td>7.1</td>
</tr>
<tr>
<td>H. Sangría</td>
<td>63.9</td>
<td>19.3</td>
</tr>
<tr>
<td>Sin Semilla</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H. RWM-8073</td>
<td>81.6</td>
<td>18.7</td>
</tr>
<tr>
<td>H. Tri-X Brand Carousel</td>
<td>73.5</td>
<td>15.1</td>
</tr>
<tr>
<td>H. Tri-X Brand Palomar</td>
<td>72.3</td>
<td>6.0</td>
</tr>
<tr>
<td>H. Tri-X Brand 313</td>
<td>52.4</td>
<td>13.0</td>
</tr>
</tbody>
</table>
En la Figura 1, se muestra el comportamiento de la dinámica de la producción por cortes, de tres de los materiales con semilla más rendidores en el 2000, donde se percibe la tendencia a obtener mayor producción en los cortes 1, 2, 3 y 4 (9 al 30 de agosto), y disminuye de manera considerable a partir del sexto corte (6 de septiembre).

Por otro lado, la Figura 2 muestra a tres de los genotipos sin semilla más rendidores. Se aprecia un comportamiento diferente, ya que su mayor producción se obtuvo entre los cortes 5, 6 y 7 (6 de septiembre al 3 de octubre), de tal forma que, se logró obtener una mayor producción en el último corte, lo cual no fue posible en los híbridos con semilla. Esto corrobora que su ciclo es más largo y tal vez se adaptan mejor a temperaturas más frescas en comparación con los genotipos con semilla. Lo anterior, indica que los híbridos sin semilla pueden ser una buena alternativa para asegurar un periodo de producción más largo, y contribuir a distribuir la producción a través del tiempo. Esto se puede apreciar más claramente en la Figura 3, donde se compara el comportamiento promedio de tres de los mejores híbridos con semilla y tres de los mejores híbridos sin semilla (triploides).

![Gráfico de rendimiento por cortes de híbridos de sandía con y sin semilla](image)

Figura 1. Rendimiento por cortes (t ha⁻¹) de tres híbridos de sandía con semilla en la región de Delicias, Chih. P-V 2000. INIFAP-CEDEL.
Figura 2. Rendimiento por cortes (t ha⁻¹) de tres híbridos de sandía sin semilla en la región de Delicias, Chih. P-V 2000. INIFAP-CEDEL.

Figura 3. Rendimiento promedio por cortes (t ha⁻¹) de tres híbridos convencionales y tres híbridos sin semilla en Delicias, Chih. P-V 2000. INIFAP-CEDEL.
Preparación del terreno

Las raíces de la sandía pueden alcanzar hasta 2 m de profundidad (Guenko, 1983 citado por Valadez, 1989), por lo cual es importante preparar una buena camara de establecimiento. Dependiendo del tipo de suelo y el cultivo anterior, se sugiere realizar lo siguiente:

a. Subsuelo a una profundidad de más de 40 a 50 cm para romper capas impermeables.

b. Barbecho a una profundidad de 30 a 35 cm para incorporar residuos vegetales, malezas y abonos orgánicos, exponer organismos dañinos y demenuzar el suelo.

c. Labranza secundaria. Se realizan dos a tres pasos de rastra, de manera que el suelo o camara quede bien mullida, si es necesario se da un paso de desterronadora y finalmente se nivea y trazan las camas de siembra.

Acolchado plástico

Efecto del acolchado plástico en el cultivo

El uso de acolchado plástico para cubrir parcial o totalmente la camara de siembra o trasplante, es una técnica que contribuye a eficientar el uso del agua de riego, reducir la evaporación, incrementar el rendimiento de frutos de un 64 a 108% y adelantar la cosecha de siete a nueve días. Esto por que incrementa la temperatura máxima del suelo – de 1.9 a 6.4°C –, y con ello la longitud de guías y cobertura de plantas (Ibarra y Flores, 1997; Mendoza et al., 1999). Además, es una buena opción para el control de malezas y como repelente de insectos como pulgones y mosquita blanca por la luz reflejada en el plástico (Lal et al., 1980, Decoteau et al., 1989 y Kring and Schuster, 1992 citados por Farias-Larios y Orozco-Santos, 1997; Brown et al., 1993; Kelly et al., 1989).

En estudios por realizados por Acosta (2000) en el Campo Experimental Delicias, se encontró que el acolchado negro en combinación con el uso de fertirrigación, en los híbridos sin semilla originó un mayor desarrollo de follaje y un incremento en el rendimiento comercial del 18 al 60% dependiendo del genotipo, en comparación con el testigo sin acolchar (Cuadro 5). Solo RWM-8073 disminuyó en un 20% su rendimiento con el uso del acolchado.

Lo anterior indica que existen genotipos que tienen una mayor respuesta al uso del acolchado plástico, como lo fueron: Crimson Trio, Tri-X B. Palomar, Scarlet Trio y Tri-X B. Carousel, los cuales con el uso del acolchado plástico
negro incrementaron su rendimiento en un 60, 44, 38 y 37%, respectivamente. Cabe aclarar que tanto en las parcelas con acolchado como en el testigo sin acolchar, se aplicó el mismo número de riegos.

Cuadro 5. Rendimiento comercial de siete híbridos de sandía sin semilla con y sin acolchado plástico. P-V 2000. INIFAP-CEDEL.

<table>
<thead>
<tr>
<th>Genotipos</th>
<th>Rendimiento (t ha⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sin Semilla</td>
<td></td>
</tr>
<tr>
<td>H. Crimson Trio</td>
<td>35.36</td>
</tr>
<tr>
<td>H. RWM-8073</td>
<td>60.24</td>
</tr>
<tr>
<td>H. Tri-X Brand Shadow</td>
<td>40.04</td>
</tr>
<tr>
<td>H. Tri-X Brand Palomar</td>
<td>51.16</td>
</tr>
<tr>
<td>H. Tri-X B. Carousel</td>
<td>52.20</td>
</tr>
<tr>
<td>H. Scarlet Trio</td>
<td>35.40</td>
</tr>
<tr>
<td>H. Tri-X Brand 313</td>
<td>51.60</td>
</tr>
<tr>
<td>PROMEDIO</td>
<td>46.57</td>
</tr>
<tr>
<td>Acolchado</td>
<td></td>
</tr>
<tr>
<td></td>
<td>56.76</td>
</tr>
<tr>
<td></td>
<td>48.08</td>
</tr>
<tr>
<td></td>
<td>47.40</td>
</tr>
<tr>
<td></td>
<td>73.68</td>
</tr>
<tr>
<td></td>
<td>71.56</td>
</tr>
<tr>
<td></td>
<td>48.92</td>
</tr>
<tr>
<td></td>
<td>62.64</td>
</tr>
<tr>
<td></td>
<td>58.43</td>
</tr>
</tbody>
</table>

En la Figura 4 se observa el efecto del acolchado plástico negro en la dinámica de producción de frutos de dos de los mejores híbridos sin semilla. Aunque no se detectó precocidad con el uso del acolchado, esta técnica permitió incrementar la producción en el híbrido Tri-X B. Carousel en los cortes 3 y 4; mientras que, en el híbrido Crimson Trio, el incremento se presentó en los cortes 4, 5 y 6. Esto, significa que la técnica del acolchado, además de incrementar el rendimiento total, permite obtener mayor producción en cortes intermedios, lo cual, varía con el genotipo utilizado.

Figura 4. Rendimiento por cortes (t ha⁻¹) de dos híbridos de sandía (sin semilla) con y sin acolchado plástico negro en la región de Delicias, Chih. P-V 2000. INIFAP-CEDEL.
Por otra parte, en estudios realizados tanto en siembra directa como en trasplante, Mendoza et al. (1999), encontraron que el uso del acolchado plástico en sandía establece bajo siembra directa incrementa el rendimiento en un 40%, en relación al testigo sin acolchar, mientras que bajo trasplante, el incremento fue de mayor magnitud (96%).

Color del acolchado plástico

En investigaciones realizadas en otras regiones productoras de sandía en México se ha encontrado lo siguiente:

a) En las regiones norte y centro de Nuevo León y norte de Tamaulipas y Coahuila, Pinales y Arellano (2001), sugieren utilizar acolchado negro en siembras de febrero y marzo, porque este absorbe el 95% de la radiación solar y une gran proporción se transmite al suelo por conducción, lo cual permite que éste se caliente e induzca cosechas 8 a 10 días más precoces. Para siembras del 15 de julio al 10 de agosto, es conveniente usar plástico bicolor, plateado, gris o blanco sobre negro; los cuales provocan un leve descenso de la temperatura del suelo (2°C a 5 cm de profundidad), ya que éstos tienen mayor poder reflectivo de la radiación que reciben.

b) En el Valle del Yaqui, Sonora, Montaño et al. (1997), encontraron que el acolchado blanco presentó mayor precocidad (15 días) que el plateado, negro y testigo, y rendimientos más altos. Por otro lado, la mayor producción se logró con un bulbo de 50% de humedecimiento más acolchado blanco con 51.8 t ha⁻¹. El uso de los acolchados tuvo una marcada diferencia en las utilidades alcanzadas, respecto al testigo, destacando nuevamente el acolchado blanco.

c) En Tecomán, Colima, Rodillo et al. (1999) evaluaron diferentes acolchados plásticos (transparente, negro, blanco, café, plata-negro y negro-plata) y un orgánico (con paja de arroz) y encontraron que el mayor rendimiento por parcela se registró en los acolchados de color blanco y plata/negro. Sin embargo, en Colima, Col., Farias y Orozco (1997), obtuvieron mayores rendimientos con los acolchados transparente o luminoso y negro.

d) En Saltillo, Coahuila, el acolchado negro superó al testigo en longitud de guía y cobertura, la cosecha se adelantó 9 días y el rendimiento se incrementó en 108% con relación al testigo (Ibarra y Flores, 1997).
Características e instalación del plástico

Pinales y Arellano (2001), recomiendan que el ancho del plástico debe ser de 1.6 m, colocado al centro de las camas de 4 m de ancho, debe estar perforado a doble hilera, separada cada una a 15 cm del centro (30 cm entre hileras) y a un metro entre plantas. La cintilla de riego debe ir al centro de las hileras de perforaciones que presenta el plástico. En este caso se requieren 2.5 rollos de plástico de 1000 m lineales, 1.6 m de ancho (4,000 m²), de calibre 100 (1 milésima de pulgada = 25 micras), que equivale a 200 kg de plástico negro, o en su defecto 250 kg del calibre 125 (plástico bicolor), si consideramos que 1000 m² de plástico calibre 100 equivalen a 50 kg.

Sin embargo, en evaluaciones realizadas a nivel local se ha utilizado plástico de 1.2 m de ancho, colocado en las orillas de las camas, perforado a una sola hilera e instalando una cintilla por plástico. La distancia entre la línea de perforaciones y la cintilla debe ser alrededor de 15 cm.

El acolchado se puede colocar de manera mecánica con acolchadora o de manera manual, de tal forma que el plástico quede bien estirado sobre la cama y en estrecho contacto con el suelo para evitar bolsas de aire.

Sistema de establecimiento

Método de siembra

La sandía se puede establecer mediante siembra directa o trasplante. No obstante, existen genotipos que producen más con uno u otro método como es el caso de la variedad Charleston Gray, la cual produce más con el método del trasplante. En cambio Crimson Sweet se comporta igual con los dos métodos (Hall, 1989). De acuerdo con lo anterior los genotipos deben evaluarse bajo ambos métodos de establecimiento.

Siembra directa

Esta se realiza en húmedo o a «tierra venida». La densidad de siembra es de 1.5 a 2.5 kg ha⁻¹ de semilla, depositando de dos a cuatro semillas por golpe de siembra. Este método presenta más riesgos de mortalidad de plantas por la incidencia de organismos dañinos (enfermedades, plagas y malezas) en las primeras etapas de desarrollo de las plántulas.
Trasplante

El método del trasplante es importante, sobretodo para el establecimiento de híbridos de alto costo de semilla y para obtener producción más uniforme y temprana (Ivanoff et al., 1960). En zonas áridas y semiaridas de México, Mendoza et al. (1999), determinaron que con el trasplante la cosecha se obtiene 15 días antes que la siembra directa y el rendimiento es superior en 28%.

Cuando se utiliza el método de trasplante, se recomienda producir las plántulas con cepellón o sustrato adherido a las raíces, lo cual, permite una mayor sobrevivencia y recuperación al trasplante. La siembra se hace en charolas de 128 hoyos, utilizando sustratos como Sun’shine N° 3. Después de humedecer el sustrato y llenar las charolas, se marcan hoyos centrales a una profundidad de 1.5 cm y se colocan de una a dos semillas por hoyo (una en el caso de híbridos) utilizando de 0.5 a 0.6 kg ha\(^{-1}\) de semilla, se cubren con sustrato o vermiculita y se da un riego pesado. Posteriormente, las charolas se colocan una sobre otra en varios grupos en un local cerrado a una temperatura de 25 a 30°C. Las charolas deben separarse o extenderse una vez que se inicie la emergencia de las primeras plántulas, ya que de lo contrario se presentarán problemas de alargamiento excesivo de tallo (etiolación).

Tamaño de cepellón o cavidad. El desarrollo de la plántula está en función del tamaño del cepellón. Mientras que algunos autores reportan que conforme se utiliza un tamaño mayor de cavidad en la producción de plántula, se obtiene un mayor rendimiento (Hall, 1989; Liu y Latimer, 1995), otros indican que no existen diferencias al respecto (Vavrina, 1993). Lo cierto es que con un tamaño de cavidad más grande existe menor restricción radicular, lo cual permite producir plántulas más vigorosas (Hall, 1989; Liu y Latimer, 1995) y por lo tanto poseen una mayor capacidad de establecimiento y producción. Aunque, debe considerarse un mayor costo de producción por requerirse un mayor espacio en el invernadero para la producción de la plántula necesaria para una hectárea.

Edad de plántula al trasplante. La planta debe tener cierto grado de desarrollo para una rápida adaptación al trasplante. Bajo condiciones cálidas, áridas y extremas, el rendimiento temprano y total es poco afectado por la edad y el tamaño de las plántulas al momento del trasplante (Vavrina, 1993; Mendoza et al., 1999) pero el peso seco de la planta, el área foliar, la altura y el número de nudos se incrementan con la mayor edad. No obstante, se considera que la edad ideal para el trasplante es de cuatro a cinco semanas (28 a 35 días).
Alternativas de establecimiento

Existen varias alternativas de establecimiento de la sandía dependiendo de la maquinaria disponible, el genotipo a utilizar, el sistema de riego y si se utiliza o no acolchado plástico. Estas son las siguientes:

1. Siembra o trasplante en camas de 5 m de ancho y a doble hilera de plantas, dejando un espaciamiento entre plantas de 0.80 a 1.00 m y entre hileras de 3.3 a 4.3 m.

2. Establecimiento en camas de 5 m de ancho con dos hileras de plantas, intercalando una cama de 1.8 m de ancho cada una a dos camas para facilitar la entrada del tractor y con ello las diferentes actividades de manejo (acostado de guías, aplicaciones, etc.) y el acarreo de los frutos durante la cosecha.

3. Establecimiento en camas de 2 m de ancho con una hilera de plantas colocada a un lado en caso de que el riego sea por gravedad y al centro si es por goteo.

4. En camas de 4 m de ancho con dos hileras de plantas al centro y separadas a 15 cm de la cintilla o manguera de riego (Pinales y Arellano, 2001).

Época de siembra

Siembra directa

En el Campo Experimental Delicias se evaluaron las variedades Charleston Gray, Jubilee 502 y Peacock Improved en cuatro fechas de siembra directa: 14 de marzo, 30 de marzo, 15 de abril y 6 de mayo (Acosta y Luján, 1988). A medida que se retrasó la fecha de siembra disminuyó el rendimiento total comercial (Figura 5), el número de cortes o período de producción, el número de frutos y el peso promedio de fruto (Figura 6), por lo que la mejor fecha de siembra fue la del 14 de marzo.

Asimismo, el número de días necesario para el inicio de las diferentes fases y etapas fenológicas disminuyó a medida que se retrasó la fecha de siembra (Cuadro 6 y Figura 7), de tal forma que el primer corte en la siembra más temprana que fue el 14 de marzo se realizó a los 116 días después de la siembra, mientras que en la siembra más tardía (6 de mayo) se efectuó a los 92 días, o sea, con una diferencia de 24 días.
Figura 5. Rendimiento total comerciable (t ha⁻¹) de sandía en cuatro fechas de siembra directa en Delicias, Chih. (promedio de tres variedades). P-V 1988. INIFAP-CEDEL.

Figura 6. Peso promedio de fruto (kg) de sandía en cuatro fechas de siembra directa en Delicias, Chih. (promedio de tres variedades). P-V 1988. INIFAP-CEDEL.

<table>
<thead>
<tr>
<th>Fase fenológica</th>
<th>Fechas de Siembra (valor en días después de la siembra)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>14-Marzo</td>
</tr>
<tr>
<td>Emergencia</td>
<td>16</td>
</tr>
<tr>
<td>Formación de hojas verdaderas</td>
<td>21</td>
</tr>
<tr>
<td>Inicio de formación de guías</td>
<td>57</td>
</tr>
<tr>
<td>Inicio de floración masculina</td>
<td>66</td>
</tr>
<tr>
<td>Inicio de floración femenina</td>
<td>78</td>
</tr>
<tr>
<td>Inicio de amarre de frutos</td>
<td>87</td>
</tr>
<tr>
<td>Primer corte</td>
<td>116</td>
</tr>
<tr>
<td>Número de cortes</td>
<td>7</td>
</tr>
</tbody>
</table>
Figura 7. Número de días para el inicio de las principales fases fenológicas en cuatro fechas de siembra directa de sandía en Delicias, Chih. (promedio de tres variedades). P-V 1988. INIFAP-CEDEL.

Cabe aclarar, que no obstante a que este estudio se realizó con variedades de polinización abierta, puede considerarse que la tendencia con el uso de otros genotipos (variedades o híbridos) puede ser similar. Sin embargo, en la actualidad existen híbridos que pueden sembrarse más tarde sin afectar en la misma magnitud el rendimiento y calidad de fruto.

Es conveniente indicar que en siembras más tempranas o más tardías es posible tener mejor precio en el mercado, pero existen mayores riesgos por heladas en las primeras, y menores rendimientos y daños del fruto por la incidencia de plagas y enfermedades en las segundas.

Siembra del almácigo en charolas

En caso de sembrar en charolas para producir plántulas en invernadero y utilizar el método de **trasplante**, se pueden utilizar las siguientes épocas de siembra:

a. Siembra temprana: 15 de febrero al 20 de marzo.
b. Siembra Tardía: 10 de abril al 30 de mayo. Con los riesgos ya mencionados.

Las plántulas sembradas y producidas en charolas con 128 cavidades bajo condiciones de invernadero tienen una emergencia más rápida en comparación que las desarrolladas bajo siembra directa (Cuadros 6 y 7,
respectivamente); además, una siembra más tardía tiende a producir plántulas listas para su trasplante en un menor tiempo (Cuadro 7), debido a que en épocas con mayor temperatura se acelera el desarrollo de las mismas.

Cuadro 7. Duración en días a emergencia y a inicio del desarrollo de la primera hoja verdadera de plántulas de sandía desarrolladas bajo condiciones de invernadero. INIFAP-CEDEL.

<table>
<thead>
<tr>
<th>Fase</th>
<th>Año</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1998</td>
</tr>
<tr>
<td>Siembra</td>
<td>13-marzo</td>
</tr>
<tr>
<td>Emergencia</td>
<td>21-marzo (8 días)</td>
</tr>
<tr>
<td>Desarrollo de primera hoja verdadera</td>
<td>28-marzo (15 días)</td>
</tr>
<tr>
<td>Trasplante</td>
<td>24-abril (41 días)</td>
</tr>
</tbody>
</table>

Conducción del almácigo

Las plántulas se desarrollan bajo invernadero con un control de temperatura (28 a 35°C) y buena ventilación para reducir la incidencia de enfermedades. Los riegos se realizan de manera pesada diariamente hasta la emergencia de plántulas, después se aplican de manera más ligera, para evitar la incidencia de damping off o secadera. En días muy calurosos es conveniente dar dos riegos ligeros, uno de 9:00 a 10:00 A.M. y el segundo de 2:00 a 4:00 P.M.

En caso de que empiecen a aparecer plantas con daño de "damping-off", se recomienda castigar un poco las plantas reduciendo ligeramente el volumen de agua en algunos riegos y mezclar con el agua de riego los fungicidas Captan o Ridomil (2 a 4 gramos por cada litro de agua) cada tercer día.

Fertilización de plántulas en el invernadero

Una adecuada nutrición de las plántulas en las charolas, permitirá que después del trasplante en campo tengan una rápida recuperación al mismo y un buen desarrollo vegetativo. Una formulación balanceada, para hacer una solución para el riego de las plántulas se presenta en el Cuadro 8. Dicha solución se aplica de tres a cuatro veces por semana, a partir de los 8 a 10 días después de la emergencia de las plántulas.

Época y método de trasplante

El trasplante se realiza cuando las plantas han desarrollado de 2 a 3 hojas verdaderas y una altura de 12 a 15 cm (edad de 28 a 35 días). De acuerdo a las fechas de siembra de almácigos en charolas citadas líneas atrás, el trasplante puede realizarse en los siguientes periodos:

1. **Trasplante Temprano:** 15 de marzo al 20 de abril.
2. **Trasplante Tardío:** 5 de mayo al 25 de junio.

<table>
<thead>
<tr>
<th>Fertilización</th>
<th>Cantidad (gramos)</th>
<th>Partes por millón (PPM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>Nitrato de Calcio</td>
<td>542</td>
<td>13</td>
</tr>
<tr>
<td>19-19-19</td>
<td>270</td>
<td>51</td>
</tr>
<tr>
<td>12-02-44</td>
<td>485</td>
<td>48</td>
</tr>
<tr>
<td>Sulfato de Magnesio</td>
<td>457</td>
<td>25</td>
</tr>
<tr>
<td>Mezcla de micronutrientes</td>
<td>30</td>
<td>5</td>
</tr>
<tr>
<td>Total de PPM</td>
<td>2303.5</td>
<td>58</td>
</tr>
</tbody>
</table>

Nota: La mezcla contiene 25.6 g de sulfato de fierro, 2.86 g de ácido bórico, 1.7 g de sulfato de manganeso, 140 mg de sulfato de zinc y 80 mg de sulfato de cobre.

No obstante, a nivel regional, lo más conveniente para asegurar altos rendimientos y menores riesgos de heladas, plagas y enfermedades, es realizar el trasplante desde finales de marzo hasta finales de abril.

Es conveniente aclimatar las plantas dos a cuatro días antes de efectuar el trasplante, lo cual consiste en exponerlas a las condiciones ambientales de campo para que se adapten más fácilmente al trasplante. Antes de trasplantar, se da un riego pesado a las plántulas procurando que no les falte agua durante el mismo.

El trasplante puede realizarse en seco o a tierra venida. En el último caso, después de surcar y regar, cuando la tierra de “punto” se descubre el lomo del surco; posteriormente, se marcan los hoyos a los lados de la cama (distanciados de 15 a 20 cm de la orilla) con una estaca de 5 a 6 cm de diámetro y a una distancia de 0.80 a 1.00 m. En cada orificio se coloca una planta, cuidando que el cepellón quede en contacto con el suelo lo mejor que sea posible para evitar que queden bolsas de aire entre éste y el suelo. Posteriormente, se riega lo más pronto posible y seis a ocho días después, se da el primer riego de auxilio.

Riegos

Las necesidades hídricas de la sandía se pueden estimar mediante el uso de la evapotranspiración y los coeficientes de cultivo reportados por Hargreaves y Samani (1991). Los valores de evapotranspiración y coeficientes de cultivo en cinco períodos de desarrollo del cultivo se presentan en el Cuadro 9.

<table>
<thead>
<tr>
<th>TIEMPO</th>
<th>ETo (mm)</th>
<th>Kc</th>
<th>ETc (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 a 30 Abri</td>
<td>89.5</td>
<td>0.2</td>
<td>17.9</td>
</tr>
<tr>
<td>Mayo</td>
<td>204.0</td>
<td>0.5</td>
<td>102.0</td>
</tr>
<tr>
<td>Junio</td>
<td>195.4</td>
<td>1.0</td>
<td>195.4</td>
</tr>
<tr>
<td>Julio</td>
<td>160.8</td>
<td>1.1</td>
<td>176.7</td>
</tr>
<tr>
<td>1 a 15 Agos</td>
<td>79.0</td>
<td>0.7</td>
<td>55.3</td>
</tr>
<tr>
<td>Total</td>
<td>547.3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ETo = Evapotranspiración de referencia
ETc = Evapotranspiración de referencia multiplicada por el coeficiente del cultivo de cada etapa o período (Kc).

Para obtener la frecuencia de riego se divide la lámina de humedad que requiere el cultivo a un 50% de abatimiento de humedad y de 60 cm de profundidad radicular que es de 46.99 mm entre la evapotranspiración del cultivo diaria. Por otro lado el número de riegos por aplicar en cada período de crecimiento del cultivo se obtiene dividiendo los días de duración del período y el intervalo de riego. En el Cuadro 10 se muestran los datos bajo riego por gravedad obtenidos al respecto para la región de Delicias, Chihuahua.

De manera resumida se puede decir que se necesitan 12 riegos distribuidos de acuerdo a las etapas fenológicas (Cuadro 10) para una producción de sandía de más de 38 t ha⁻¹. El primer riego debe ser pesado, con una lámina bruta de 10.4 cm. En el mes de mayo se aplicarán dos riegos de auxilio con láminas brutas de 5.87 cm; de manera similar en junio y julio se aplicarán 4 riegos de auxilio, y finalmente si la producción lo justifica, se dará el último riego de auxilio con la misma lámina anterior, hasta completar un volumen total de 6841.25 m³ ha⁻¹ (utilizando una eficiencia de aplicación parcelaria del 80%).

<table>
<thead>
<tr>
<th>Tiempo</th>
<th>Frecuencia de riego (días)</th>
<th>Número de riegos</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 a 30 Abri</td>
<td>Riego de inicio</td>
<td>1</td>
</tr>
<tr>
<td>Mayo</td>
<td>14</td>
<td>2</td>
</tr>
<tr>
<td>Junio</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>Julio</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>1 a 15 Agos</td>
<td>Riego final</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>12</td>
</tr>
</tbody>
</table>

Nota: Para suelos de textura media y representativos de la región se considera que la lámina de humedad que requiere el cultivo es de 46.99 mm.
El rango recomendado de pendientes del terreno es de 0.05 a 0.5%, y el gasto por surco de alrededor de un litro por segundo (lps), debiendo considerar la cantidad total de agua disponible y el número total de surcos para ajustar las secciones o tendidas de riego.

Para hacer proyectos de riego presurizado tecnificado, deben usarse eficiencias de conducción del orden del 98%, eficiencias de distribución cercanas a 95% y coeficientes de uniformidad entre 80 y 90% (Peña 1997).

En lo que respecta al riego por goteo, en general se pudo confirmar que aporta economías en agua de 25 a 40%; fertilizantes de un 15 a 25% y valores semejantes para el consumo de energía eléctrica. Se incrementó la producción de 20 a 35% y la ganancia en calidad del producto obtenido fue del 15 al 25%, según la variedad del cultivo.

La colocación de la línea regante que más ventajas presentó fue la que se instaló de 5 a 10 cm de profundidad. Bajo las condiciones de manejo regional, tipos de suelo y cultivos a establecer, la línea regante que presenta más versatilidad es la que tiene emisores a cada 40 cm, un gasto que va de 1.3 a 1.7 lph y en un calibre 6000 y 8000 (seis y ocho milésimas de pulgada de espesor de la pared).

Fertirrigación

Se conoce como fertirrigación a la técnica de aplicar fertilizante en los sistemas de riego presurizados, con lo que se logra una mayor eficiencia de agua y fertilizante, se incrementa la producción y la calidad de las cosechas. Para aprovechar los beneficios de esta tecnología, se requiere considerar una dosificación racional de agua y nutrientes, de acuerdo a la demanda del cultivo a través de su ciclo de desarrollo, características del suelo y del agua, las condiciones ambientales, las especificaciones de operación del sistema de riego y tipos de fertilizantes, entre otros.

Los suelos de la región se caracterizan por ser pobres en materia orgánica, ricos en carbonatos de calcio, pH de ligeramente alcalino a alcalino y con cierto contenido de sales; por su parte el agua de los pozos profundos en algunos casos contiene una alta concentración de sales. Condiciones que originan que sean deficientes en nitrógeno, fósforo y micronutrientos.

En los experimentos realizados sobre la absorción de nutrientes en este tipo de cultivos en fertirrigación, se ha encontrado que la dosis de fertilización más adecuada para sandía es 150-60-125. La aplicación de potasio
es necesaria cuando el agua de riego contiene una alta cantidad de sales, ya que este elemento ayuda a disminuir el daño salino a los cultivos, y es fundamental cuando existe una alta concentración de sodio.

El requerimiento nutricional de los cultivos varía a través del ciclo de desarrollo, de acuerdo a la función fisiológica de cada nutriente y de la etapa fenológica de la planta. Los resultados obtenidos indican que el nitrógeno y el potasio se absorben durante todo el ciclo de desarrollo, de manera paralela a la velocidad de acumulación de materia seca; en cambio, la absorción de fósforo y micronutrimentos es en mayor proporción durante el primer tercio del ciclo vegetativo.

La aplicación de fósforo en fertirrigación con aguas salinas y con altos contenidos de calcio, debe hacerse utilizando como fuente el ácido fosfórico; éste se puede aplicar puro o en formulaciones de fertilizantes ácidos, donde únicamente esté mezclado con nitrógeno, ya que con otros elementos pueden formarse precipitados, los cuales pueden tapar los goteros. Se recomienda fraccionar el fósforo en seis aplicaciones, durante los primeros 50 días después del trasplante, ya que es la época de mayor demanda. Otra alternativa es la aplicación de fósforo en el suelo al momento de formar la cama o surco, usando las fuentes granuladas tradicionales, preferentemente el superfosfato de calcio triple, ya que es de reacción ácida.

En base a los resultados obtenidos sobre la dosis de fertilización y la absorción de nutrimentos a través del ciclo de desarrollo, se ha definido la programación de la fertirrigación para un cultivo con duración de 14 semanas a partir del trasplante (Cuadro 11). Las cantidades indican los kilogramos por hectárea que se deben aplicar semanalmente de acuerdo a la dosis total, y las semanas se cuentan a partir del trasplante. La cantidad de fertilizante se debe calcular de acuerdo a las fuentes a usar y su concentración.

Fertilización

Cuando se utiliza riego por gravedad se recomienda fertilizar con la fórmula 150-60-00 (kilogramos de nitrógeno, fósforo y potasio por hectárea), aplicando todo el fósforo, una tercera parte del nitrógeno y una tercera parte del potasio al momento de la siembra o trasplante. El resto del nitrógeno y potasio dividirlo de la siguiente forma:

1. Una tercera parte 30 a 40 días después de la primera aplicación.
2. Una tercera parte al inicio de la floración femenina

<table>
<thead>
<tr>
<th>Semana</th>
<th>Dosis de Fertilización: 150-60-125</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nitrógeno kg/semana/ha</td>
</tr>
<tr>
<td>1</td>
<td>0.08</td>
</tr>
<tr>
<td>2</td>
<td>0.14</td>
</tr>
<tr>
<td>3</td>
<td>0.35</td>
</tr>
<tr>
<td>4</td>
<td>0.84</td>
</tr>
<tr>
<td>5</td>
<td>2.00</td>
</tr>
<tr>
<td>6</td>
<td>4.62</td>
</tr>
<tr>
<td>7</td>
<td>10.08</td>
</tr>
<tr>
<td>8</td>
<td>19.38</td>
</tr>
<tr>
<td>9</td>
<td>29.54</td>
</tr>
<tr>
<td>10</td>
<td>32.26</td>
</tr>
<tr>
<td>11</td>
<td>24.59</td>
</tr>
<tr>
<td>12</td>
<td>14.09</td>
</tr>
<tr>
<td>13</td>
<td>6.80</td>
</tr>
<tr>
<td>14</td>
<td>4.27</td>
</tr>
</tbody>
</table>

Labores de cultivo

El número y periodicidad de los desherbes o limpias varía con el grado de infestación de malezas, por lo que se pueden realizar de 3 a 6 desherbes. Por otra parte, se recomienda «escardar» las acequias de riego a los lados de las camas después de cada auxilio (a partir de los 40 días después de la siembra o trasplante), sugiriendo que antes de hacerlas se acomoden las guías para evitar dañarlas; es necesario dejar pasar de 2 a 3 días antes de aplicar el siguiente riego con objeto de que el suelo se ventile. Esto además de favorecer un mejor almacenaje de humedad, propicia el crecimiento radicular de las plantas. Posteriormente se da un paso con vertedera chica para favorecer el marcado de canales, a la vez que se «aporcar» sobre la línea de plantas, proporcionándoles soporte.

Se recomienda efectuar el volteado de frutos con un intervalo de 3 a 5 días (o cuando tengan una longitud de 10 a 15 cm, con la finalidad de evitar ablandamientos o decoloraciones de los mismos. Inclusive, cuando la superficie del suelo está demasiado húmeda se «calzan» los frutos, lo cual consiste en poner piedras, pedazos de madera o hierba seca debajo de ellos para evitar que estén en contacto directo con el suelo.
Es recomendable utilizar de 3 a 4 cajones de abejas por hectárea para aumentar la eficiencia en el amarre de frutos, ya que George (1989), señala que las flores de la sandía son polinizadas por insectos, principalmente abejas. Las plantas son autocompables, pero debido a que las flores son unisexuales existe un elevado porcentaje de polinización cruzada.

Manejo integrado de insectos plaga

El manejo integrado de plagas insectiles (MIPI) constituye el uso inteligente de todos los recursos disponibles con el propósito de mantener sus niveles de población por debajo de aquellos que ocasionan daño económico. Las acciones deben ser ejecutadas para restaurar, preservar y afianzar el balance del agroecosistema; por ello el MIPI no considera la erradicación del organismo problema, ya que ciertos niveles de infestación pueden resultar deseables para la producción misma y para el desarrollo de poblaciones de organismos benéficos.

Además de la correcta identificación de la plaga, y el conocimiento suficiente de sus aspectos biológicos y del cultivo, se requiere realizar muestreos semanales o más frecuentes, dependiendo de las etapas críticas, y contar con umbrales de acción dinámicos y criterios para la toma de decisiones. Antes de recurrir al control químico, el cual es deseable reducir al mínimo o evitar si es posible, debe considerarse primero la combinación de técnicas tales como: métodos culturales, enfermedades específicas de insectos, variedades resistentes, atrayentes, repelentes y control biológico en todas sus modalidades (Byerly *et al.*, 1998; King y Saunders, 1984; Martínez, 1998).

A continuación se describen las plagas más comunes que inciden en este cultivo, así como el daño que causan; además se sugiere un combate alternativo al químico. Al final, en el Cuadro 12, se indican los productos, dosis y épocas de aplicación para su control.

Pulga saltona *Epitrix cucumeris* (Harris). Es un insecto pequeño de 1.5 a 2.0 mm de largo, de forma redondeada, de color negro brillante y con hileras longitudinales de fosos pequeños en los élitros; los fémures posteriores son bien desarrollados, lo que les permite saltar cuando se les molesta. El daño es causado por el adulto al hacer pequeños agujeros a manera de “tiro de munición”. Es una plaga esporádica de plantas jóvenes con daños localizados, por ello mucho ayuda el eliminar plantas hospedantes de la familia Solanaceae en la periferia del cultivo (King y Saunders, 1984; Ramírez *et al.*, 2002).
Pulgón *Aphis gossypii* Glover. En estado adulto esta plaga mide 1.5 mm, es de coloración variable que va de amarillento, café, verde oscuro a negruzco; los corínulos, los ojos y los extremos de las patas son de color oscuro. El ciclo de vida lo completa en 5-8 días en verano seco, llega a producir hasta 9 ninfas por día, por lo que se llegan a generar grandes poblaciones y un gran número de generaciones al año. Las colonias pueden estar formadas por individuos áperos y alados, localizadas en el envés de las hojas. Además de succionar la savia, sobre la mielecilla que excretan se desarrolla el hongo "fumagina", lo cual junto con la transmisión de virus afectan el rendimiento y calidad de frutos (King y Saunders, 1984; Ramírez *et al*., 2002; CAEDEL, 1984).

La prácticas sugeridas contra esta plaga son: siembras tempranas, uso de cubiertas flotantes antes de la floración, barreras vegetales y acolchados reflejantes (Ramírez *et al*., 2002), liberación de huevecillos de *Chrisoperta carneae* a dosis de 1-2 cc/ha (Sauz, 2002) al detectar los primeros pulgones y repetir cada 1-2 semanas (Mena, 2001).

Chicharrita *Empoasca fabae* (Harris). Los adultos son en forma de cuña, de color verde claro, miden aproximadamente 3 mm de largo, tienen una hileras de espinas en las tibias de las patas posteriores y la habilidad de desplazarse hacia atrás, adelante o a los lados. Los adultos y ninñas chupan la savia de hojas, pecíolos y yemas, inyectando toxinas que causan distorsión de las hojas; en ataques severos producen clorosis y necrosis de bordes, reduciendo el vigor de las plantas (King y Saunders, 1984; CAEDEL, 1984; Ramírez *et al*., 2002). Condiciones secas y cálidas favorecen el desarrollo de grandes poblaciones, llegando a completar su ciclo de vida en hasta 20 días (King y Saunders, 1984).

Las mismas prácticas sugeridas para pulgón pueden ser de utilidad para este insecto, además de que sus poblaciones son reguladas por diversos depredadores (Ramírez *et al*., 2002).

Mosquita blanca *Bermisia* spp. Es un insecto diminuto en forma de palomilla, de aproximadamente 1 mm de longitud, de cuerpo amarillento y alas blancas. Las ninñas pasan por cuatro instares con apariencia de escama; del último, el cual tiene manchas oculares prominentes de color rojo, emerge el adulto a través de una fisura en forma de "T" (Nava *et al*., 2001; Norman *et al*., s/f). El desarrollo es favorecido por el clima seco y caliente (30º C), de tal manera que el periodo de huevo a adulto en estas condiciones es de alrededor de 15 días (King y Saunders, 1984; Nava, 1996; Norman *et al*., s/f). Puede causar los siguientes tipos de daño a sus diversas hospederas: 1) succion de savia, 2) excreción de mielecilla, 3) transmisión de enfermedades virales y 4)
inyección de toxinas las cuales inducen desordenes fisiológicos (Nava y Cano, 1998; Norman et al., s/f).

Además de las sugerencias para pulgón, es recomendable la rotación de cultivos y la destrucción inmediata de residuos de cosecha; así mismo el uso de entomopatógenos, como *Beaurevia bassiana* (Mycotrol WP, Naturalis – L y BEA- SIN), *Paecilomyces fumosorotus* (PAE-SIN), *P. farinosus, Verticillium lecanii* (Mycotrol), *Metarhizium anisopliae y Aschersonia aleyrodis* (Nava et al., 2001; Ramírez et al., 2002); los cuales, para que ejerzan un control efectivo, requieren de una buena cobertura de aplicación, humedad relativa superior a 60%, y temperatura entre 20 y 30° C (Nava et al., 2001).

Minador Liriomyza spp. Los adultos son mosquitos de 1.5 mm de longitud, de color amarillo con negro. La larva es ápoda, completamente desarrollada mide 2.0 mm y es de color amarillento. Un mina delgada y sinuosa, la cual aumenta de espesor conforme se aleja de su punto de partida, indica su presencia (CAEDEL, 1984; UC, 1998). En clima cálido requiere de 2 semanas para completar su ciclo de vida. El daño directo es la formación de las minas, lo cual origina reducción de clorofila y capacidad fotosintética de la planta; si es severo causan defoliación y quemaduras de frutos con reducción de rendimiento, calidad y concentración de azúcares; además las minas y picaduras de los adultos favorecen la entrada de patógenos (Ramírez et al., 2002; UC, 1998).

El inicio temprano del control químico contra otras plagas propicia el incremento de minador, debido a que se eliminan los parasitoides nativos, por lo que se recomienda retrasar al máximo esta acción, particularmente cuando, a pesar observar gran cantidad de minas, no se colecten pupas en las charolas (ver Cuadro 12). Por otra parte, es importante evitar el estrés hídrico del cultivo ya que favorece el aumento de la plaga (Ramírez et al., 2002). En general, todas las prácticas culturales señaladas para los otros insectos son válidas para éste.

Gusano soldado Spodoptera exigua Hubner. Los huevecillos son depositados en las hojas en masas de 100 o más, son verdes y cubiertos con escamas de la hembra; las larvas jóvenes son gregarias y se alimentan en el envés de la hoja esqueletonizando y cubriéndose de telaraña; posteriormente se dispersan, son de cuerpo liso, de color verde opaco, con un punto negro arriba del segundo par de patas torácicas y llega a medir 2.5 cm; la pupación tiene lugar en el suelo; el adulto es una palomilla jaspeada de café y gris, y de 2.5 cm de expansión alar (UC, 1998; CAEDEL, 1984). Además de alimentarse
del follaje, su mayor daño lo ocasiona realizando orificios irregulares en la superficie de los frutos, afectando la calidad (Ramírez et al., 2002).

El barbecho oportuno y las quemar reducen significativamente las poblaciones de pupas; otra buena práctica es la eliminación de quelite en las orillas del predio, así como evitar sembrar donde haya habido algodón y alfalfa en el ciclo anterior (Ramírez et al., 2002).

Gusano del fruto Heliothis zea (Boddie). El adulto es una palomilla de color amarillo pajizo, con una manchita oscura en el centro de las alas anteriores y una expansión alar de 4 cm; los huevecillos son depositados en forma aislada, son casi esféricos, con estrías radiales, primero blancos y luego grises; las larvas pueden ser de color verde pálido, rojizo, café y aún café oscuro casi negro; a diferencia de las anteriores tienen pináculos setigeros que les da una apariencia áspida, llega a medir 4 cm; pupa en el suelo (UC, 1998; CAEDEL, 1984). Los daños lo ocasionan las larvas al barrenar los botones florales y frutos tiernos.

Las mismas prácticas sugeridas para gusano soldado son útiles para éste; además de liberaciones de la avispita Trichogramma a dosis de 30 mil individuos por ha. Usualmente no se requiere del control químico de esta plaga (Ramírez et al., 2002).

Manejo integrado de enfermedades

Las enfermedades son responsables de afectaciones en la producción de hasta un 40 %, incremento de un 30 % de los costos de producción y contaminación del medio ambiente. Las principales enfermedades que se presentan en sandias hortalizas de la región son: Padriziones radicales y ahogamiento (Phytophthora capsici), marchitez (Phytophthora infestans), cenicillas (Leveillula taurica y Erysiphe cichoracearum), pudrición de la corona (Fusarium oxysporum, F sp radicis y Lycopersicum), mancha foliar (Alternaria solani), manchas bacterianas (Xanthomonas vesicatoria y Pseudomonas spp), nemátodos (Meloidogyne incognita) y virosis.

El manejo integrado de estos organismos dañinos en la producción de hortalizas de clima cálido, debe fundamentarse en los conocimientos de los componentes del agroecosistema y sus relaciones, para favorecer su estabilidad y mantener así a estos organismos, en niveles que no causen pérdidas económicas. Dentro de las múltiples técnicas que se pueden emplear,
<table>
<thead>
<tr>
<th>PLACA</th>
<th>PRODUCTO COMERCIAL</th>
<th>DOSIS POR HECTÁREA</th>
<th>EPISODIO DE APLICACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulga saltona</td>
<td>Affix (3)</td>
<td>0.3 Kg</td>
<td>Cuando se observan de tres a cinco insectos por planta pequeña.</td>
</tr>
<tr>
<td>Pulga aphid gossypii</td>
<td>Thionex 35% CE (0)</td>
<td>0.75 Lt</td>
<td>Al detectar las primeras colonias.</td>
</tr>
<tr>
<td>Chicharina Epoasca fabae</td>
<td>Naled 90 (1)</td>
<td>1.0 Lt</td>
<td>Al observar tres insectos por hoja.</td>
</tr>
<tr>
<td>Mosca blanca Bernisia spp.</td>
<td>Affix (3)</td>
<td>1.0</td>
<td>Al observar tres adultos en la 5º hoja terminal de la guía.</td>
</tr>
<tr>
<td>Minador Liriomyza spp.</td>
<td>Naled 90 (1)</td>
<td>1.5 Lt</td>
<td>Al observar 10 pupas/charol de colección en 3 días consecutivos.</td>
</tr>
<tr>
<td>Gusano soldado</td>
<td>Dipel 2X (0)</td>
<td>0.5 Kg</td>
<td>Cuando se observen los primeros insectos sobre el folaje, antes de dañar el fruto.</td>
</tr>
</tbody>
</table>

CUADRO 12. Principales plagas que atacan al cultivo de sandía en la región de Delicias, Chih. Productos comerciales para su control, dosis por hectárea y época de aplicación. CEDEL-INIFAP.
en un manejo integrado de enfermedades están: el uso de prácticas culturales, fechas adecuadas de siembra, arreglos topológicos, genotipos precoces y tolerantes, uso de la técnica del trasplante, acolchados reflejantes de luz, sistema de pronóstico, fertirrigación, control biológico y físico, y el uso de sustancias naturales y químicas.

Los daños por enfermedad más comunes en este cultivo son ocasionados por la «marchitez por fusarium», la que es ocasionada por el hongo *Fusarium* spp., que penetra en la planta a través de las raíces. Si ocurre en estado de plántula, se produce una pudrición blanca acuosa y las plantitas se «achaparran». En plantas adultas los síntomas de daño se acentúan más durante las horas de calor intenso, las plantas tienen la apariencia de falta de agua y con frecuencia no llegan a producir y mueren. Se recomienda rotación de cultivos por lo menos durante cinco años, limpiar y lavar la maquinaria después de usarse en lugares infestados, riegos ligeros pero más frecuentes y realizar los cultivos y escardas de manera oportuna.

Otra enfermedad que puede presentarse en esta región es la «cenicilla polvorienta» (*Erysiphe cichoracearum* DC.), que se presenta en forma de manchas blanquecinas en las hojas, las cuales se cubren de un polvillo blanco en ambos lados. Su ataque provoca una defoliación prematura de la planta. Se recomienda sembrar variedades o híbridos resistentes a la enfermedad. También puede prevenirse mediante aplicaciones periódicas de Benomilo PN 50 (0.3-0.4 kg/ha), clorotalonil PN 75 (2-3 kg/ha), triadimefon (0.3-0.5 kg/ha) y triforine CE 20 (1.0 l/ha). Sugiere no utilizar Azufre para su control, debido a que los tejidos de estas plantas no pueden tolerarlo, sobre todo si se presentan temperaturas arriba de 30ºC.

Ocasionalmente y durante los últimos años se han presentado problemas por la incidencia de virosis como es el caso del mosaico del pepino (VMP), mosaico de la sandía (VMS) y la mancha angular del tabaco (VMAT), para lo cual se recomienda utilizar variedades tolerantes, eliminar plantas infestadas y controlar malezas e insectos como la mosquita blanca, la chicharrita y los pulgones que son los principales insectos transmisores de virus.

Se presenta también la «pudrición negra o apical del fruto», que aparece como una mancha negra en la parte terminal del fruto en formación, la cual aumenta en tamaño hasta provocar la destrucción del mismo. En cuanto se presenten los primeros síntomas, es conveniente efectuar un raleo de frutos, eliminando los frutos enfermos para que no interfieran con el desarrollo de frutos sanos (CAELALA, 1984).
En el caso de la incidencia de cualquier enfermedad es conveniente eliminar las primeras plantas enfermas, controlar la maleza tanto dentro como fuera del cultivo y destruir los restos de plantas una vez terminado el ciclo del cultivo.

Cosecha

Existen algunos indicadores físicos y visuales, que pueden ser los siguientes:

a) Tiempo. En base al conocimiento del ciclo vegetativo de la variedad o híbrido que se está produciendo de acuerdo a la fecha de siembra utilizada. El período a cosecha puede variar de los 95 a 120 días después de la siembra y de los 65 a 90 días después del trasplante.

b) Marchitamiento o secado de la hoja y zarzillo más cercanos al fruto.

c) Sonido. Los productores afirman que cuando el fruto tiene un sonido sordo y hueco al ser golpeado con los dedos o la palma de la mano está listo para cosecharse (Pantastico, 1984; Reche, 1988).

Literatura citada

Comité Editorial del CEDEL

M.C. Francisco Javier Quiñones Pando
M.C. Gerardo Francisco Acosta Rodríguez
M.C. Raúl Rodríguez Martínez
M.C. Guadalupe Terrazas Prieto
Ing. Gamaliel Orozco Hernández

Manejo del Cultivo de Sandía en la Región Centro-Sur del Estado de Chihuahua
se terminó de imprimir en diciembre de 2003, en Delicias, Chihuahua, México, en los talleres de Impresos PAYCAR (Tel. 474-70-76), con un tiraje de 500 ejemplares más sobrantes para su reposición.

Edición: M.C. Francisco Báez Iracheta
PUBLICACIÓN FINANCIADA POR LA FUNDACIÓN
PRODUCE CHIHUAHUA, A.C.