ALGUNAS MEDIDAS IMPORTANTES EN EL CONTROL DE LA PUDRICIÓN DE CUELLO DEL MANZANO

Manuel R. RAMIREZ LEGARRETA
Juan L. JACOBO CUELLAR

SECRETARIA DE AGRICULTURA Y RECURSOS HÍDRICOS
INSTITUTO NACIONAL DE INVESTIGACIONES FORESTALES Y AGROPECUARIAS
CENTRO DE INVESTIGACIÓN REGIONAL DEL NORTE CENTRO
CAMPO EXPERIMENTAL SIERRA DE CHIHUAHUA
Cd. Cuauhtémoc, Chih.

Folleto Técnico Núm. 3 Septiembre de 1993
CONTENIDO

<table>
<thead>
<tr>
<th>Capítulo</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCCIÓN</td>
<td>2</td>
</tr>
<tr>
<td>AGENTE CAUSAL</td>
<td>2</td>
</tr>
<tr>
<td>CICLO DE LA ENFERMEDAD</td>
<td>3</td>
</tr>
<tr>
<td>SINTOMATOLOGÍA</td>
<td>3</td>
</tr>
<tr>
<td>EL MANEJO DEL AGUA DE RIEGO Y EL DESARROLLO DE LA ENFERMEDAD</td>
<td>4</td>
</tr>
<tr>
<td>Número de riegos</td>
<td>6</td>
</tr>
<tr>
<td>Método de riego</td>
<td>7</td>
</tr>
<tr>
<td>Tipo de suelo</td>
<td>10</td>
</tr>
<tr>
<td>MANEJO DEL PUOERTO EN RELACION A LA PUDRICION DEL CUELLO</td>
<td>10</td>
</tr>
<tr>
<td>LA RECUPERACION DE ARBOLES ENFERMOS MEDIANTE PRACTICAS CULTURALES</td>
<td>11</td>
</tr>
<tr>
<td>LA RECUPERACION DE ARBOLES ENFERMOS MEDIANTE APLICACIONES DE FUNGICIDAS</td>
<td>13</td>
</tr>
<tr>
<td>Productos</td>
<td>14</td>
</tr>
<tr>
<td>Epocas de inicio de aplicaciones</td>
<td>14</td>
</tr>
<tr>
<td>Dosis, número de aplicaciones y días entre aplicación</td>
<td>16</td>
</tr>
<tr>
<td>LITERATURA CONSULTADA</td>
<td>18</td>
</tr>
</tbody>
</table>
ALGUNAS MEDIDAS IMPORTANTES EN EL CONTROL DE LA PUDRICION DE CUELLO DEL MANZANO.

Manuel R. RAMIREZ LEGARRETA
Juan L. JACOBO CUELLAR

INTRODUCCION

La pudrición de cuello del manzano es considerada la enfermedad radical más importante de este frutal en la región noroeste del estado de Chihuahua. Se estima que durante 1982 el 5% de los árboles plantados en la región se encontraban afectados por este patógeno, la proporción pudo incrementarse en los últimos años, básicamente por el aumento de plantaciones con portainjertos susceptibles (MM.106, MM.111), por la falta de información respecto a este problema y en ocasiones por la escasa planeación de los huertos a plantar.

AGENTE CAUSAL

La pudrición de cuello del manzano es causada principalmente por *Phytophthora cactorum*, aunque también puede ser ocasionada por *P. syringae*, *P. megasperma*, *P. cambivora*, *P. cryptogeia*, *P. drechsleri* y *P. citricola*.

Phytophthora cactorum se caracteriza por producir un micelio cenocítico algo toruloso; esporangios ovaloalargados.

* Investigadores del programa de Fitopatología del Campo Experimental "Sierra de Chihuahua": CIRNOC-INIFAP-SARH.

con un tamaño de 32 x 28mm; bajo condiciones favorables el esporangio produce zoosporas, las cuales tienen forma de pera, son uninucleadas y biflageladas, las clamidiosporas son producidas terminalmente, rara vez se intercalan sobre el micelio y son fácilmente confundibles con Oosporas.

El oogonio y el anteridio son producidos en hifas separadas. El diámetro del primero varía de 25 a 40mm en tanto que el segundo mide de 13 a 14mm. Las temperaturas para el desarrollo del hongo en medio de cultivo son: minimas de 4 a 7 °C; óptima cerca de 27 °C y máxima de 32 °C.

CICLO DE LA ENFERMEDAD

El hongo puede permanecer en el suelo sin hospedante durante largos períodos, probablemente obtiene el alimento de material vegetativo muerto. El patógeno se multiplica mediante la producción de esporangios y la liberación de zoosporas, consecuentemente las zoosporas juegan un papel importante en la diseminación del hongo a través del agua libre del suelo, lo que depende en gran parte del manejo del agua de riego en el huerto. Las infecciones posteriores pueden derivarse por el inóculo que queda en el tejido muerto o infectado de árboles enfermos o muertos.

SINTOMATOLOGIA.

Aunque éste puede variar por región, el primer síntoma aéreo visible en los árboles de manzano es la coloración rojo-
púrpura en las hojas a finales de verano y principios de otoño. Al año siguiente se observa una reducción en el tamaño de las hojas y brotes; los frutos también se quedan pequeños y amarren en gran cantidad. El síntoma típico subterráneo es en el área del cuello o corona, donde la madera interna se torna descolorida hasta llegar a una pudrición suave de color café-rojizo, normalmente el daño no supera el punto de unión entre la variedad y el portainjerto, ya que este último es el principal objetivo del patógeno. Una vez que el árbol ha sido anillado y no tiene flujo de agua y nutrientes hacia la parte superior muere.

La enfermedad puede localizarse también en la raíz, y en ocasiones el cuello no presenta la pudrición.

EL MANEJO DEL AGUA DE RIEGO Y EL DESARROLLO DE LA ENFERMEDAD.

Dentro de los factores que influyen en el desarrollo de la pudrición de cuello, se pueden considerar los que son propios del huerto o unidad productiva, como tipo de suelo, y los que son del manejo que el productor da a su huerto, como tipo de riegos, número de riegos, frecuencia de éstos, etc., además de otros que siendo de manejo se convierten en propios del huerto al paso del tiempo, como el portainjerto seleccionado durante la plantación. Todos estos factores y su dinámica de intervención en el huerto, interactúan en la producción de una mayor o menor dispersión e intensidad de la pudrición de cuello del manzano.

En un estudio que comprendió el análisis de 100 huertos distribuidos en los principales municipios productores de manzana de la región, se pudo determinar la influencia del manejo sobre el desarrollo de la pudrición de cuello. El Cuadro 1 presenta la relación existente entre algunos factores de manejo y el desarrollo de la pudrición de cuello mediante X^2; encontrándose que número de riegos-tipo de suelo, número de riegos-método de riego, número de riegos-frecuencia de riegos, tipo de suelo-frecuencia de riegos y métodos de riego-frecuencia de riegos correlacionaron con la detección e intensidad del daño de los árboles atacados por pudrición de cuello.

CUADRO 1. VALORES DE X^2 Y DEPENDENCIA DE LOS FACTORES QUE SE TOMARON COMO DETERMINANTES EN EL NUMERO DE ARBOLES DAÑADOS POR PUDRICION DE CUELLO EN LA SIERRA DE CHIHUAHUA CESTICH-CIRNOC-INIFAP.1987.

<table>
<thead>
<tr>
<th>Número de riegos</th>
<th>Tipo de suelo</th>
<th>Método de riego</th>
</tr>
</thead>
<tbody>
<tr>
<td>X^2 Calc. X^2 Tab.</td>
<td>X^2 Calc. X^2 Tab.</td>
<td>X^2 Calc. X^2 Tab.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tipo de suelo</th>
<th>19.78^{**}</th>
<th>19.30</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Método de riego</th>
<th>53.67^{**}</th>
<th>43.77</th>
<th>33.75</th>
<th>43.77^{*}</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Frecuencia de riego</th>
<th>185.46^{**}</th>
<th>31.49</th>
<th>41.24^{**}</th>
<th>31.04</th>
<th>71.59^{**}</th>
<th>43.73</th>
</tr>
</thead>
</table>

Nota: Todas las tablas de contingencia tuvieron subdivisiones que indicaron la presencia o no de la pudrición de cuello.
Existe interacción.
*No existe interacción.
Lo anterior indica que por lo menos el factor manejo es tan importante en el desarrollo de esta enfermedad como lo puede ser el clima y el hospedante mismo y que dentro de este aspecto se hace preponderante el manejo del agua de riego.

a). NUMERO DE RIEGOS

El número de riegos y su frecuencia influyen grandemente en el desarrollo de la enfermedad. A medida que aumenta el número de riegos, se incrementa la incidencia de la pudrición de cuello (Figura 1). La situación es muy parecida con el espaciamiento o frecuencia de los riegos ya que conforme se retiran éstos, la enfermedad va siendo menor (Figura 2).

b). METODO DE RIEGO

Se detectaron siete métodos de riego, de los cuales, seis son mediante el empleo de agua rodada, diferenciándose únicamente por la forma en que el riego es manipulado dentro del huerto. Los métodos son:

1). Calle, el cual se realiza mediante una melga ubicada entre las hileras de los árboles sin que el agua tenga contacto con ellos.

2). Parejo sin bordo, es aquel que no requiere ningún método de contención del agua.

3). Cuadros, que se realiza ubicando a cada árbol en medio de un cuadrado formado por bordos de contención y el agua dentro de cada cuadrado.

Figura 1. Por ciento de árboles con pudrición de cuello en tres estratos de riegos en el noroeste de Chihuahua. CESICH. 1987.

Figura 2. Por ciento de árboles con pudrición de cuello en cuatro estratos de espaciamiento en riegos. CESICH. 1987.
4). Cajetes, es el que sólo riega la parte del cuello del árbol mediante una poza realizada ahí y distribuyendo el agua de árbol a árbol mediante una zanja.

5) Hilera, que consiste en levantar bordos a la distancia de la zona de goteo del árbol localizando el agua por dentro de los bordos, prácticamente es el mismo riego que por la calle, sólo que la ubicación del agua es distinta ya que el primero tiene contacto con el árbol y el segundo no.

6). Bordo en mitad de la calle, es aquel donde los bordos de contención se levantan en medio de las hileras de árboles regando prácticamente todo el terreno.

7). Riego por aspersión, que consiste en el uso de aspersores y no requiere de un manejo especial del suelo para manejar el agua.

La Figura 3, muestra el porcentaje de árboles dañados por pudrición de cuello en cada uno de los métodos mencionados, observándose que en el riego por la calle donde no existe contacto del agua con el tronco, así como aspersión, parejo sin bordo y cuadros los cuales no utilizan una gran cantidad de agua, tuvieron bajos índices de incidencia; sin embargo, el método de riego en cajetes alrededor del tronco presentó un número mayor de árboles dañados, aumentando éste considerablemente en el método de hileras y bordo en mitad de la calle, en el cual se utiliza la mayor cantidad de agua.

Lo anterior refleja que aquellos métodos que propician una constante humedad alrededor del cuello del árbol (cajetes e hileras) son determinantes en el desarrollo de la pudrición, ya que facilitan las condiciones adecuadas para ello. Por otro lado, grandes volúmenes de agua (bordo a mitad de la calle) tienen el mismo efecto además de que dispersan el patógeno por todo el huerto.

Figura 3. Por ciento de árboles con pudrición de cuello en siete métodos de riego en el noroeste de Chihuahua. CESICH.1987.
c). TIPO DE SUELO

El tipo de suelo (Figura 4), por sí solo no muestra nada significativo; pero éste con el manejo de riego da una resultante positiva en cuanto a la incidencia de la pudrición de cuello.

![Gráfico de barras](image)

Figura 4. Por ciento de árboles con pudrición de cuello en tres texturas de suelo en el noroeste de Chihuahua. CESICH.1987.

MANEJO DEL HUERTO EN RELACIÓN A LA PUDRICION DE CUELLO.

Para combatir la pudrición de cuello se debe utilizar un enfoque integrado de manejo de enfermedades utilizando prácticas culturales, resistencia genética y tratamientos químicos. Es decir, se debe de considerar en la actualidad, el sitio de plantación y el manejo del agua de riego como los aspectos más importantes para prevenir la pudrición de cuello.

Las plantaciones deberán realizarse en suelos con buen drenaje o bien mejorar el que se tiene; lo anterior permitirá, en un momento dado, plantar inclusive portainjertos que no son resistentes al patógeno, pero seleccionables por sus cualidades productivas.

Por otro lado, la selección de portainjertos resistentes o moderadamente susceptibles también coadyuvaría en la reducción del riesgo e intensidad de ataque de la pudrición de cuello; sin embargo, es necesario considerar que algunos patrones que son resistentes a Phytophthora (M.26) son susceptibles a otro patógeno (Erwinia amylovora, causante del tizón de fuego), por lo que en la selección tendrán que intervenir múltiples factores que son de carácter obligado en el proceso de planeación de un huerto.

En el caso de portainjertos susceptibles como MM.106 se requiere que el área próxima al cuello del árbol se encuentre libre de excesos de humedad, adecuando el mejor método de riego y evitar acumulaciones de agua en áreas próximas al tronco del frutal.

LA RECUPERACION DE ARBOLES ENFERMOS MEDIANTE PRACTICAS CULTURALES

Cuando la pudrición de cuello está presente en el huerto, se requiere evitar
excesos de humedad en el área dañada para restringir el avance y dispersión de la enfermedad. Posteriormente se requiere hacer una fosa alrededor del cuello del árbol y descubrir la(s) pudrición(es) dejando que el tejido dañado se ventile y tenga contacto con la luz solar por algún tiempo.

La figura 5 muestra el efecto de un tratamiento testigo en un experimento realizado durante 1991-1992, en el cual la única actividad realizada para manejar la pudrición de cuello fue una fosa realizada a 20-30 cm de profundidad y de un radio de 1 m de longitud a partir del tronco del árbol, comparada con la respuesta promedio de tratamientos con productos fungicidas específicos contra la enfermedad, mediante la variable longitud libre de cáncer medida a partir del nivel del suelo en la plantación experimental en tres fechas de muestreo.

Como se puede apreciar en la figura mencionada, el tratamiento testigo con fosa, aunque no tuvo una recuperación tan alta como aquellos árboles tratados con fungicidas, sí presentó una ligera mejoría durante el primer año de estudio experimental. Es necesario hacer la aclaración que en este experimento no se modificó el factor principal en el desarrollo de la pudrición de cuello, que en este caso lo fue el tipo de suelo, y que los tratamientos se realizaron únicamente en el primer año de estudio, por lo que durante el segundo año de evaluación los árboles de todos los tratamientos tuvieron una fuerte recaída; sin embargo, el efecto de la fosa en el tratamiento testigo quedó patente durante 1991 al no disminuir la longitud libre de cáncer en los árboles experimentales, lo cual hubiera indicado un avance de la enfermedad durante ese primer año.

LA RECUPERACION DE ARBOLES ENFERMOS MEDIANTE APLICACIONES DE FUNGICIDAS.

Bajo una situación obligada de uso de fungicidas, como lo es el caso de recuperación de material ya infectado por el patólogo, es necesario considerar, que solamente se utilizarán hasta que se
alcance un nivel de rehabilitación, en el que mediante manejo de agua de riego, poda, fertilización o bien modificando el factor de origen de la enfermedad (si éste existe); se pueda continuar con el proceso curativo de los árboles enfermos con el uso adecuado de fungicidas.

El Cuadro 2 muestra el comportamiento de dos productos fungicidas específicos contra Phytophthora comparados con un testigo sin aplicaciones, mediante un valor integral de longitud libre de cáncer denominado área bajo la curva del desarrollo de la enfermedad en tres muestreos realizados.

a) PRODUCTOS

El Cuadro anterior indica que los productos Ridomil y Aliette fueron estadísticamente similares pero superiores al testigo sin aplicaciones; en términos generales ambos productos funcionaron bien en la reducción de la superficie ocupada por el cáncer de la pudrición de cuello.

B) EPOCAS DE INICIO DE APLICACIONES

El Cuadro también señala que la mejor época de inicio de las aplicaciones de los productos fue junio, superando en efectividad a las aspersiones llevadas a cabo apartir de septiembre, y en este caso fue superior Ridomil-junio que Aliette-junio. Cabe hacer la aclaración que el trabajo está diseñado para ataques nuevos; es decir donde no se habían tenido y por lo tanto, los síntomas no serán identificables en forma precisa.

<table>
<thead>
<tr>
<th>PRODUCTOS</th>
<th>EPOCA DE</th>
<th>DOSIS (g/l)</th>
<th>No. DE</th>
<th>DIAS ENTRE</th>
</tr>
</thead>
<tbody>
<tr>
<td>APLIC.</td>
<td>APLIC.</td>
<td>APLIC.</td>
<td>APLIC.</td>
<td></td>
</tr>
<tr>
<td>Aliette</td>
<td>a</td>
<td>Junio</td>
<td>ab</td>
<td>2.5</td>
</tr>
<tr>
<td>(118.4)</td>
<td>(124.6)</td>
<td>(128.3)</td>
<td>(122.0)</td>
<td>(122.0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Letras iguales son estadísticamente similares al 0.05%.
(1) Valores de área bajo la curva.
AB Cuando se incluyen productos.
hasta el mes de junio. Sin embargo, si se conocen los árboles o las áreas afectadas por la enfermedad con mayor anticipación que el tiempo experimental, las aplicaciones podrán realizarse mucho antes, dependiendo de la selección del fungicida.

c) DOSIS, NUMERO DE APLICACIONES Y DIAS ENTRE APLICACION

No se encontraron diferencias estadísticas entre alguno de estos componentes; siendo indistinto aplicar 2.5 ó 1.5 g/l, realizar tres ó cuatro aplicaciones, o bien efectuar las aplicaciones cada 30 ó cada 10 días.

Lo expuesto, es desde el punto de vista de abatir la severidad de la enfermedad, ya que desde el punto de vista económico y de resistencia la situación es otra, ya que debe buscarse la dosis más baja, el menor número de aplicaciones y el espaciamiento más adecuado según el programa general de aplicaciones del huerto que permita un ahorro en el costo energético de mantenimiento.

Un aspecto necesario de señalar es que la selección del producto dependerá del número de árboles enfermos, de la distribución de éstos, de la intensidad de ataque e incluso del tipo de suelo, ya que en suelos arcillosos y compactados resulta más costoso el proceso de apertura de la fosa que en suelos ligeros, sin compactación y profundos. Así mismo, es fundamental incluir en la zona aplicada (ya sea en áreas compactas o bien árboles dispersos), una superficie de 10 metros que circunde los últimos árboles enfermos, y a partir de aquí es muy importante que se eviten las concentraciones excesivas de humedad en la parte del cuello, lo cual implicaría una nueva recaída del frutal y mayores gastos para el productor.
LITERATURA CONSULTADA

Los Folletos Técnicos del CIRNOC-INIFAP, tienen el objetivo de difundir entre agentes de cambio, información de utilidad práctica relacionada con conocimientos sobre principios, procesos y procedimientos sobre una especie forestal y/o agropecuaria o una disciplina general referida a esa especie.

En el proceso editorial de esta publicación participó el siguiente personal del CIRNOC:

Comité Editorial del CESICH:
Ing. Roberto Gutiérrez González (Responsable del Comité) (Edición y formación del documento).
M.C. Manuel R. Ramírez Legarreta (Tipografía computarizada).

Comité Editorial Regional del CIRNOC
Ph.D. Enrique Sánchez Granillo (Presidente)
Ing. Roberto Gutiérrez González (Secretarios)
Ph.D. Angel Lagarda Murrieta (Vocal Agrícola)
Ph.D. Vicente Fernández Hernández (Revisor Técnico del artículo).

Esta publicación se terminó de imprimir en el mes de septiembre de 1993, en los talleres gráficos del Campo Experimental Calera, C.E.T. en el km. 24.5 de la carretera ZACATECAS-FRESNILLO, CALERA DE V.R., ZAC.
Tiraje 300
Ejemplares